Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T06:18:33.034Z Has data issue: false hasContentIssue false

Categories of graphs for operadic structures

Published online by Cambridge University Press:  28 September 2023

PHILIP HACKNEY*
Affiliation:
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-3568 U.S.A. e-mail: philip@phck.net

Abstract

We recall several categories of graphs which are useful for describing homotopy-coherent versions of generalised operads (e.g. cyclic operads, modular operads, properads, and so on), and give new, uniform definitions for their morphisms. This allows for straightforward comparisons, and we use this to show that certain free-forgetful adjunctions between categories of generalised operads can be realised at the level of presheaves. This includes adjunctions between operads and cyclic operads, between dioperads and augmented cyclic operads, and between wheeled properads and modular operads.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by a grant from the Simons Foundation (#850849).

References

Ara, D.. Higher quasi-categories vs higher Rezk spaces. J. K-Theory 14(3) (2014), 701–749.CrossRefGoogle Scholar
Bar-Natan, D. and Dancso, Z.. Finite type invariants of w-knotted objects II: tangles, foams and the Kashiwara–Vergne problem. Math. Ann. 367(3-4) (2017), 1517–1586.Google Scholar
Barwick, C.. From operator categories to higher operads. Geom. Topol. 22(4) (2018), 1893–1959.Google Scholar
Batanin, M. and Markl, M.. Operadic categories and duoidal Deligne’s conjecture. Adv. Math. 285 (2015), 16301687.Google Scholar
Batanin, M. and Markl, M.. Operadic categories as a natural environment for Koszul duality. Compositionality 5(3) (2023), 46.Google Scholar
Batanin, M., Markl, M. and Obradović, J.. Minimal models for graph-related (hyper)operads. J. Pure Appl. Algebra 227(7) (2023), paper no. 107329, 37.Google Scholar
Batanin, M. A. and Berger, C.. Homotopy theory for algebras over polynomial monads. Theory Appl. Categ. 32 (2017), paper no. 6, 148–253.Google Scholar
Beardsley, J. and Hackney, P.. Labelled cospan categories and properads. J. Pure Appl. Algebra 228(2) (2024), paper no. 107471, 62.Google Scholar
Berger, C.. Moment categories and operads. Theory Appl. Categ. 38 (2022), paper no. 39, 1485–1537.Google Scholar
Burkin, S.. Twisted arrow categories, operads and Segal conditions. Theory Appl. Categ. 38 (2022), paper no. 16, 595–660.Google Scholar
Chu, H. and Hackney, P.. On rectification and enrichment of infinity properads. J. Lond. Math. Soc. (2) 105(1) (2022), 1418–1517.Google Scholar
Chu, H. and Haugseng, R.. Enriched $\infty$ -operads. Adv. Math. 361 (2020), paper no. 106913, 85.Google Scholar
Chu, H. and Haugseng, R.. Homotopy-coherent algebra via Segal conditions. Adv. Math. 385 (2021), paper no. 107733, 95.Google Scholar
Chu, H., Haugseng, R. and Heuts, G.. Two models for the homotopy theory of $\infty$ -operads. J. Topol. 11(4) (2018), 856–872.Google Scholar
Cisinski, D.-C. and Moerdijk, I.. Dendroidal sets as models for homotopy operads. J. Topol. 4(2) (2011), 257–299.CrossRefGoogle Scholar
Cisinski, D.-C. and Moerdijk, I.. Dendroidal Segal spaces and $\infty$ -operads. J. Topol. 6(3) (2013), 675–704.Google Scholar
Cisinski, D.-C. and Moerdijk, I.. Dendroidal sets and simplicial operads. J. Topol. 6(3) (2013), 705–756.Google Scholar
Dancso, Z., Halacheva, I. and Robertson, M.. Circuit algebras are wheeled props. J. Pure Appl. Algebra 225(12) (2021), paper no. 106767, 33.Google Scholar
Drummond-Cole, G. C. and Hackney, P.. A criterion for existence of right-induced model structures. Bull. London Math. Soc. 51(2) (2019), 309–326.Google Scholar
Drummond-Cole, G. C. and Hackney, P.. Dwyer–Kan homotopy theory for cyclic operads. Proc. Edinburgh Math. Soc. (2) 64(1) (2021), 29–58.Google Scholar
Duncan, R.. Types for quantum computing. PhD. thesis. Oxford University (2006).Google Scholar
Elliott, P. C. D.. Homotopy coherent cyclic operads. PhD. thesis. University of Melbourne (2023).Google Scholar
Gan, W. L.. Koszul duality for dioperads. Math. Res. Lett. 10(1) (2003), 109–124.Google Scholar
Garner, R.. Polycategories via pseudo-distributive laws. Adv. Math. 218(3) (2008), 781–827.Google Scholar
Gepner, D. and Haugseng, R.. Enriched $\infty$ -categories via non-symmetric $\infty$ -operads. Adv. Math. 279 (2015), 575–716.Google Scholar
Getzler, E. and Kapranov, M. M.. Cyclic operads and cyclic homology. In Geometry, Topology and Physics. Conf. Proc. Lecture Notes Geom. Topology, IV (Int. Press, Cambridge, MA, 1995), pp. 167–201.Google Scholar
Getzler, E. and Kapranov, M. M.. Modular operads. Compositio Math. 110(1) (1998), 65–126.Google Scholar
Hackney, P.. Segal conditions for generalized operads. To appear in Higher Structures in Geometry, Topology and Physics. Contemp. Math. (Amer. Math. Soc.). arXiv:2208.13852 [math.CT].Google Scholar
Hackney, P., Robertson, M. and Yau, D.. Infinity Properads and Infinity Wheeled Properads. Lecture Notes in Math. 2147 (Springer, Cham, 2015).Google Scholar
Hackney, P., Robertson, M. and Yau, D.. Shrinkability, relative left properness, and derived base change. New York J. Math. 23 (2017), 83117.Google Scholar
Hackney, P., Robertson, M. and Yau, D.. On factorizations of graphical maps. Homology Homotopy Appl. 20(2) (2018), 217–238.Google Scholar
Hackney, P., Robertson, M. and Yau, D.. Higher cyclic operads. Algebr. Geom. Topol. 19(2) (2019), 863–940.Google Scholar
Hackney, P., Robertson, M. and Yau, D.. A graphical category for higher modular operads. Adv. Math. 365 (2020), paper. no. 107044, 61.Google Scholar
Hackney, P., Robertson, M. and Yau, D.. Modular operads and the nerve theorem. Adv. Math. 370 (2020), paper no. 107206, 39.Google Scholar
Haugseng, R. and Kock, J.. $\infty$ -operads as symmetric monoidal $\infty$ -categories. To appear in Publ. Mat., arXiv:2106.12975 [math.CT].Google Scholar
Heuts, G., Hinich, V. and Moerdijk, I.. On the equivalence between Lurie’s model and the dendroidal model for infinity-operads. Adv. Math. 302 (2016), 8691043.Google Scholar
Hinich, V. and Vaintrob, A.. Cyclic operads and algebra of chord diagrams. Selecta Math. (N.S.) 8(2) (2002), 237–282.Google Scholar
Jones, V.. Planar algebras, I. arXiv:math/9909027 [math.QA].Google Scholar
Joyal, A. and Kock, J.. Feynman graphs, and nerve theorem for compact symmetric multicategories (extended abstract). Electron. Notes Theor. Comput. Sci. 270(2) (2011), 105–113.Google Scholar
Joyal, A. and Tierney, M.. Quasi-categories vs Segal spaces. In Categories in Algebra, Geometry and Mathematical Physics. Contemp. Math. 431 (Amer. Math. Soc., Providence, RI, 2007), pp. 277–326.Google Scholar
Kaufmann, R. M. and Ward, B. C.. Feynman Categories. Astérisque 387 (Société Mathématique de France, Paris, 2017).Google Scholar
Kock, J.. Polynomial functors and trees. Int. Math. Res. Not. 2011(3) (2011), 609673.Google Scholar
Kock, J.. Graphs, hypergraphs and properads. Collect. Math. 67(2) (2016), 155–190.Google Scholar
Lurie, J.. Higher algebra. Available at https://www.math.ias.edu/~lurie/papers/HA.pdf. Google Scholar
Lurie, J.. Higher Topos Theory. Ann. of Math. Stud. 170 (Princeton University Press, Princeton, NJ, 2009).Google Scholar
Mac Lane, S.. Categorical algebra. Bull. Amer. Math. Soc. 71 (1965), 40106.CrossRefGoogle Scholar
Markl, M., Merkulov, S. and Shadrin, S.. Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra 213(4) (2009), 496–535.Google Scholar
Moerdijk, I. and Weiss, I.. Dendroidal sets. Algebr. Geom. Topol. 7 (2007), 14411470.Google Scholar
Moerdijk, I. and Weiss, I.. On inner Kan complexes in the category of dendroidal sets. Adv. Math. 221(2) (2009), 343–389.Google Scholar
Raynor, S.. Brauer diagrams, modular operads, and a graphical nerve theorem for circuit algebras. arXiv:2108.04557 [math.CT].Google Scholar
Raynor, S.. Graphical combinatorics and a distributive law for modular operads. Adv. Math. 392 (2021), paper no. 108011, 87.Google Scholar
Rezk, C.. A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc. 353(3) (2001), 973–1007.Google Scholar
Rezk, C.. A Cartesian presentation of weak n-categories. Geom. Topol. 14(1) (2010), 521–571.Google Scholar
Segal, G.. Categories and cohomology theories. Topology 13 (1974), 293312.Google Scholar
Shulman, M.. The 2-Chu–Dialectica construction and the polycategory of multivariable adjunctions. Theory Appl. Categ. 35 (2020), paper no. 4, 89–136.Google Scholar
Strumila, M.. Giving daggers to higher cats: Generalised quasi operads, astroidal sets, and a surface operad. PhD. thesis. University of Melbourne (2020).Google Scholar
Vallette, B.. A Koszul duality for PROPs. Trans. Amer. Math. Soc. 359(10) (2007), 4865–4943.Google Scholar
Walde, T.. 2-Segal spaces as invertible infinity-operads. Algebr. Geom. Topol. 21(1) (2021), 211–246.Google Scholar
Weber, M.. Familial 2-functors and parametric right adjoints. Theory Appl. Categ. 18 (2007), paper no. 22, 665–732.Google Scholar
Weiss, I.. From operads to dendroidal sets. In Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proc. Sympos. Pure Math. 83 (Amer. Math. Soc., Providence, RI, 2011), pp. 31–70.Google Scholar
Yau, D. and Johnson, M. W.. A Foundation for PROPs, Algebras and Modules. Math. Surveys Monogr. 203 (American Mathematical Society, Providence, RI, 2015).Google Scholar