Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T06:06:02.933Z Has data issue: false hasContentIssue false

Trying to name what doesn't change: Neural nonresponse to Cognitive Therapy for depression

Published online by Cambridge University Press:  16 May 2023

Marlene V. Strege*
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
John A. Richey
Affiliation:
Department of Psychology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Greg J. Siegle
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
*
Author for correspondence: Marlene V. Strege, E-mail: stregem@upmc.edu

Abstract

Background

Theoretical models of neural mechanisms underlying Cognitive Behavior Therapy (CBT) for major depressive disorder (MDD) propose that psychotherapy changes neural functioning of prefrontal cortical structures associated with cognitive-control processes (DeRubeis, Siegle, & Hollon, 2008); however, MDD is persistent and characterized by long-lasting vulnerabilities to recurrence after intervention, suggesting that underlying neural mechanisms of MDD remain despite treatment. It follows that identification of treatment-resistant aberrant neural processes in MDD may inform clinical and research efforts targeting sustained remission. Thus, we sought to identify brain regions showing aberrant neural functioning in MDD that either (1) fail to exhibit substantive change (nonresponse) or (2) exhibit functional changes (response) following CBT.

Methods

To identify treatment-resistant neural processes (as well as neural processes exhibiting change after treatment), we collected functional magnetic resonance imaging (fMRI) data of MDD patients (n = 58) before and after CBT as well as never-depressed controls (n = 35) before and after a similar amount of time. We evaluated fMRI data using conjunction analyses, which utilized several contrast-based criteria to characterize brain regions showing both differences between patients and controls at baseline and nonresponse or response to CBT.

Results

Findings revealed nonresponse in a cerebellar region and response in prefrontal and parietal regions.

Conclusions

Results are consistent with prior theoretical models of CBT's direct effect on cortical regulatory processes but expand on them with identification of additional regions (and associated neural systems) of response and nonresponse to CBT.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamaszek, M., D'Agata, F., Ferrucci, R., Habas, C., Keulen, S., Kirkby, K. C., … Verhoeven, J. (2017). Consensus paper: Cerebellum and emotion. Cerebellum (London, England), 16(2), 552576. https://doi.org/10.1007/s12311-016-0815-8.CrossRefGoogle ScholarPubMed
Baumann, O., & Mattingley, J. B. (2012). Functional topography of primary emotion processing in the human cerebellum. NeuroImage, 61(4), 805811. https://doi.org/10.1016/j.neuroimage.2012.03.044.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795. https://doi.org/10.1016/j.tics.2015.10.004.CrossRefGoogle ScholarPubMed
Beck, A. T. (1979). Cognitive therapy of depression. New York, NY: Guilford Press.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8), 969977. https://doi.org/10.1176/appi.ajp.2008.08050721.CrossRefGoogle ScholarPubMed
Beijers, L., Wardenaar, K. J., van Loo, H. M., & Schoevers, R. A. (2019). Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping. Molecular Psychiatry, 24(6), 888900. https://doi.org/10.1038/s41380-019-0385-5.CrossRefGoogle ScholarPubMed
Bluhm, R. L., Clark, C. R., McFarlane, A. C., Moores, K. A., Shaw, M. E., & Lanius, R. A. (2011). Default network connectivity during a working memory task. Human Brain Mapping, 32(7), 10291035. https://doi.org/10.1002/hbm.21090.CrossRefGoogle ScholarPubMed
Carl, J. R., Soskin, D. P., Kerns, C., & Barlow, D. H. (2013). Positive emotion regulation in emotional disorders: A theoretical review. Clinical Psychology Review, 33(3), 343360. https://doi.org/10.1016/j.cpr.2013.01.003.CrossRefGoogle ScholarPubMed
Chuang, J.-Y., Whitaker, K. J., Murray, G. K., Elliott, R., Hagan, C. C., Graham, J. M., … Suckling, J. (2016). Aberrant brain responses to emotionally valent words is normalised after cognitive behavioural therapy in female depressed adolescents. Journal of Affective Disorders, 189, 5461. https://doi.org/10.1016/j.jad.2015.09.008.CrossRefGoogle ScholarPubMed
Cieslik, E. C., Zilles, K., Caspers, S., Roski, C., Kellermann, T. S., Jakobs, O., … Eickhoff, S. B. (2012). Is there ‘one’ DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cerebral Cortex, 23(11), 26772689. https://doi.org/10.1093/cercor/bhs256.CrossRefGoogle ScholarPubMed
Clark, D. A., & Beck, A. T. (2010). Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends in Cognitive Sciences, 14(9), 418424. https://doi.org/10.1016/j.tics.2010.06.007.CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17(10), 493501. https://doi.org/10.1016/j.tics.2013.08.006.CrossRefGoogle ScholarPubMed
Colnaghi, S., Honeine, J.-L., Sozzi, S., & Schieppati, M. (2017). Body sway increases after functional inactivation of the cerebellar vermis by cTBS. The Cerebellum, 6(1), 114. https://doi.org/10.1007/s12311-015-0758-5.CrossRefGoogle Scholar
Colombetti, G. (2014). The feeling body: Affective science meets the enactive mind. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Conradi, H. J., Ormel, J., & de Jonge, P. (2011). Presence of individual (residual) symptoms during depressive episodes and periods of remission: A 3-year prospective study. Psychological Medicine, 41(6), 11651174. https://doi.org/10.1017/S0033291710001911.CrossRefGoogle ScholarPubMed
Cremers, H. R., Wager, T. D., & Yarkoni, T. (2017). The relation between statistical power and inference in fMRI. PLoS One, 12(11), 120. https://doi.org/10.1371/journal.pone.0184923.CrossRefGoogle ScholarPubMed
Cuijpers, P., Turner, E. H., Koole, S. L., van Dijke, A., & Smit, F. (2014). What is the threshold for a clinically relevant effect? The case of major depressive disorders. Depression and Anxiety, 31(5), 374378. https://doi.org/10.1002/da.22249.CrossRefGoogle ScholarPubMed
Cullen, K. R., Klimes-Dougan, B., Vu, D. P., Westlund Schreiner, M., Mueller, B. A., Eberly, L. E., … Lim, K. O. (2016). Neural correlates of antidepressant treatment response in adolescents with major depressive disorder. Journal of Child and Adolescent Psychopharmacology, 26(8), 705712. https://doi.org/10.1089/cap.2015.0232.CrossRefGoogle ScholarPubMed
Dael, N., Mortillaro, M., & Scherer, K. R. (2012). Emotion expression in body action and posture. Emotion (Washington, D.C.), 12(5), 1085. https://doi.org/10.1037/a0025737.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
De Gelder, B. (2016). Emotions and the body. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
Delaveau, P., Jabourian, M., Lemogne, C., Guionnet, S., Bergouignan, L., & Fossati, P. (2011). Brain effects of antidepressants in major depression: A meta-analysis of emotional processing studies. Journal of Affective Disorders, 130(1-2), 6674. https://doi.org/10.1016/j.jad.2010.09.032.CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews. Neuroscience, 9(10), 788796. https://doi.org/10.1038/nrn2345.CrossRefGoogle ScholarPubMed
Dichter, G. S., Felder, J. N., Petty, C., Bizzell, J., Ernst, M., & Smoski, M. J. (2009). The effects of psychotherapy on neural responses to rewards in major depression. Biological Psychiatry, 66(9), 886897. https://doi.org/10.1016/j.biopsych.2009.06.021.CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews. Neuroscience, 12(8), 467477. https://doi.org/10.1038/nrn3027.CrossRefGoogle ScholarPubMed
Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663681. https://doi.org/10.1017/s1092852900013754.CrossRefGoogle ScholarPubMed
Epstein, J., Pan, H., Kocsis, J. H., Yang, Y., Butler, T., Chusid, J., … Silbersweig, D. A. (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. The American Journal of Psychiatry, 163(10), 17841790. https://doi.org/10.1176/ajp.2006.163.10.1784.CrossRefGoogle ScholarPubMed
Ferrucci, R., Giannicola, G., Rosa, M., Fumagalli, M., Boggio, P. S., Hallett, M., … Priori, A. (2012). Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognition & Emotion, 26(5), 786799. https://doi.org/10.1080/02699931.2011.619520.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (1996). Structured clinical interview for DSM IV Axis I disorders–patient edition. (Vol. 20). New York: Biometrics Research Department, New York State Psychiatric Institute.Google Scholar
Forbes, E. E., Olino, T. M., Ryan, N. D., Birmaher, B., Axelson, D., Moyles, D. L., & Dahl, R. E. (2010). Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cognitive, Affective & Behavioral Neuroscience, 10(1), 107118. https://doi.org/10.3758/CABN.10.1.107.CrossRefGoogle ScholarPubMed
Franklin, G., Carson, A. J., & Welch, K. A. (2016). Cognitive behavioural therapy for depression: Systematic review of imaging studies. Acta Neuropsychiatrica, 28(2), 6174. https://doi.org/10.1017/neu.2015.41.CrossRefGoogle ScholarPubMed
Frewen, P. A., Dozois, D. J. A., & Lanius, R. A. (2008). Neuroimaging studies of psychological interventions for mood and anxiety disorders: Empirical and methodological review. Clinical Psychology Review, 28(2), 228246. https://doi.org/10.1016/j.cpr.2007.05.002.CrossRefGoogle ScholarPubMed
Friston, K. J., Holmes, A. P., Price, C. J., Büchel, C., & Worsley, K. J. (1999). Multisubject fMRI studies and conjunction analyses. Neuroimage, 10(4), 385396. https://doi.org/10.1006/nimg.CrossRefGoogle ScholarPubMed
Friston, K. J., Penny, W. D., & Glaser, D. E. (2005). Conjunction revisited. Neuroimage, 25(3), 661667. https://doi.org/10.1016/j.neuroimage.2005.01.013.CrossRefGoogle ScholarPubMed
Frodl, T., Scheuerecker, J., Schoepf, V., Linn, J., Koutsouleris, N., Bokde, A. L. W., … Meisenzahl, E. (2011). Different effects of mirtazapine and venlafaxine on brain activation: An open randomized controlled fMRI study. The Journal of Clinical Psychiatry, 72(4), 448457. https://doi.org/10.4088/JCP.09m05393blu.CrossRefGoogle ScholarPubMed
Fu, C. H., Williams, S. C., Cleare, A. J., Brammer, M. J., Walsh, N. D., Kim, J., & …Bullmore, E. T. (2004). Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-related functional magnetic resonance imaging study. Archives of General Psychiatry, 61(9), 877889. https://doi.org/10.1001/archpsyc.61.9.877.CrossRefGoogle ScholarPubMed
Fu, C. H. Y., Williams, S. C. R., Brammer, M. J., Suckling, J., Kim, J., Cleare, A. J., … Bullmore, E. T. (2007). Neural responses to happy facial expressions in major depression following antidepressant treatment. The American Journal of Psychiatry, 164(4), 599607. https://doi.org/10.1176/ajp.2007.164.4.599.CrossRefGoogle ScholarPubMed
Garg, S., Sinha, V. K., Tikka, S. K., Mishra, P., & Goyal, N. (2016). The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study. Psychiatry Research, 243, 413420. https://doi.org/10.1016/j.psychres.2016.07.023.CrossRefGoogle ScholarPubMed
Gilbert, T., Martin, R., & Coulson, M. (2011). Attentional biases using the body in the crowd task: Are angry body postures detected more rapidly? Cognition & Emotion, 25(4), 700708. https://doi.org/10.1080/02699931.2010.495881.CrossRefGoogle ScholarPubMed
Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., & Mayberg, H. S. (2004). Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61(1), 3441. https://doi.org/10.1001/archpsyc.61.1.34.CrossRefGoogle ScholarPubMed
Gotlib, I. H., & Hammen, C. L. (2008). Handbook of depression (2nd ed.). New York, NY: Guilford Press.Google Scholar
Grice, J. W., & Barrett, P. T. (2014). A note on Cohen's overlapping proportions of normal distributions. Psychological Reports, 115(3), 741747. https://doi.org/10.2466/03.PR0.115c29z4.CrossRefGoogle ScholarPubMed
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(26), 85868594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.CrossRefGoogle ScholarPubMed
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78(4), 224230. https://doi.org/10.1016/j.biopsych.2015.02.020.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56. doi:10.1136/jnnp.23.1.56.CrossRefGoogle ScholarPubMed
Hanuka, S., Olson, E. A., Admon, R., Webb, C. A., Killgore, W. D. S., Rauch, S. L., … Pizzagalli, D. A. (2022). Reduced anhedonia following internet-based cognitive-behavioral therapy for depression is mediated by enhanced reward circuit activation. Psychological Medicine, 110. https://doi.org/10.1017/S0033291722001106.Google ScholarPubMed
Hearne, L., Cocchi, L., Zalesky, A., & Mattingley, J. B. (2015). Interactions between default mode and control networks as a function of increasing cognitive reasoning complexity. Human Brain Mapping, 36(7), 27192731. https://doi.org/10.1002/hbm.22802.CrossRefGoogle ScholarPubMed
Heath, R. G. (1977). Modulation of emotion with a brain pacemaker: Treatment for intractable psychiatric illness. The Journal of Nervous and Mental Disease, 165(5), 300317. https://doi.org/10.1097/00005053-197711000-00002.CrossRefGoogle Scholar
Hindash, A. H. C., & Amir, N. (2012). Negative interpretation bias in individuals with depressive symptoms. Cognitive Therapy and Research, 36(5), 502511. https://doi.org/10.1007/s10608-011-9397-4.CrossRefGoogle Scholar
Horner, M. S., Siegle, G. J., Schwartz, R. M., Price, R. B., Haggerty, A. E., Collier, A., & Friedman, E. S. (2014). C'Mon get happy: Reduced magnitude and duration of response during a positive-affect induction in depression. Depression and Anxiety, 31(11), 952960. https://doi.org/10.1002/da.22244.CrossRefGoogle ScholarPubMed
Judd, L. L., Akiskal, H. S., Maser, J. D., Zeller, P. J., Endicott, J., Coryell, W., … Keller, M. B. (1998). A prospective 12-year study of subsyndromal and syndromal depressive symptoms in unipolar major depressive disorders. Archives of General Psychiatry, 55(8), 694700. https://doi.org/10.1001/archpsyc.55.8.694.CrossRefGoogle ScholarPubMed
Kennedy, N., Abbott, R., & Paykel, E. S. (2004). Longitudinal syndromal and sub-syndromal symptoms after severe depression: 10-year follow-up study. The British Journal of Psychiatry: The Journal of Mental Science, 184, 330336. https://doi.org/10.1192/bjp.184.4.330.CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG Studies. The American Journal of Psychiatry, 175(11), 11111120. https://doi.org/10.1176/appi.ajp.2018.17101124.CrossRefGoogle ScholarPubMed
Konishi, M., McLaren, D. G., Engen, H., & Smallwood, J. (2015). Shaped by the past: The default mode network supports cognition that is independent of immediate perceptual input. PLoS One, 10(6), 118. https://doi.org/10.1371/journal.pone.0132209.CrossRefGoogle ScholarPubMed
Leddy, J. J., Cox, J. L., Baker, J. G., Wack, D. S., Pendergast, D. R., Zivadinov, R., & Willer, B. (2013). Exercise treatment for postconcussion syndrome: A pilot study of changes in functional magnetic resonance imaging activation, physiology, and symptoms. The Journal of Head Trauma Rehabilitation, 28(4), 241249. https://doi.org/10.1097/HTR.0b013e31826da964.CrossRefGoogle ScholarPubMed
Marwood, L., Wise, T., Perkins, A. M., & Cleare, A. J. (2018). Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neuroscience and Biobehavioral Reviews, 95, 6172. https://doi.org/10.1016/j.neubiorev.2018.09.022.CrossRefGoogle ScholarPubMed
Mayberg, H. S. (2003). Positron emission tomography imaging in depression: A neural systems perspective. Neuroimaging Clinics of North America, 13(4), 805815. https://doi.org/10.1016/s1052-5149(03)00104-7.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., & Jerabek, P. A. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48(8), 830843. https://doi.org/10.1016/s0006-3223(00)01036-2.CrossRefGoogle ScholarPubMed
Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. J. (2010). Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31(1), 126139. https://doi.org/10.1002/hbm.20850.CrossRefGoogle ScholarPubMed
McClintock, S. M., Husain, M. M., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Trivedi, M. H., … Rush, A. J. (2011). Residual symptoms in depressed outpatients who respond by 50% but do not remit to antidepressant medication. Journal of Clinical Psychopharmacology, 31(2), 180. https://doi.org/10.1097/JCP.0b013e31820ebd2c.CrossRefGoogle Scholar
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483506. https://doi.org/10.1016/j.tics.2011.08.003.CrossRefGoogle ScholarPubMed
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J.-B. (2005, April 15). Valid conjunction inference with the minimum statistic. NeuroImage, 25(3), 653660. https://doi.org/10.1016/j.neuroimage.2004.12.005.CrossRefGoogle ScholarPubMed
Nierenberg, A. A., Husain, M. M., Trivedi, M. H., Fava, M., Warden, D., Wisniewski, S. R., … Rush, A. J. (2010). Residual symptoms after remission of major depressive disorder with citalopram and risk of relapse: A STAR*D report. Psychological Medicine, 40(1), 4150. https://doi.org/10.1017/S0033291709006011.CrossRefGoogle ScholarPubMed
Piccoli, T., Valente, G., Linden, D. E. J., Re, M., Esposito, F., Sack, A. T., & Di Salle, F. (2015). The default mode network and the working memory network are not anti-correlated during all phases of a working memory task. PLoS One, 10(4), 116. https://doi.org/10.1371/journal.pone.0123354.CrossRefGoogle Scholar
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15(5), 599613. https://doi.org/10.1093/scan/nsaa076.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., … Yarkoni, T. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115126. https://doi.org/10.1038/nrn.2016.167.CrossRefGoogle ScholarPubMed
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., & Siegle, G. J. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81(4), 347357. https://doi.org/10.1016/j.biopsych.2016.06.023.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38, 433447. https://doi.org/10.1146/annurev-neuro-071013-014030.CrossRefGoogle ScholarPubMed
Ritchey, M., Dolcos, F., Eddington, K. M., Strauman, T. J., & Cabeza, R. (2011). Neural correlates of emotional processing in depression: Changes with cognitive behavioral therapy and predictors of treatment response. Journal of Psychiatric Research, 45(5), 577587. https://doi.org/10.1016/j.jpsychires.2010.09.007.CrossRefGoogle ScholarPubMed
Romera, I., Pérez, V., Ciudad, A., Caballero, L., Roca, M., Polavieja, P., & Gilaberte, I. (2013). Residual symptoms and functioning in depression, does the type of residual symptom matter? A post-hoc analysis. BMC Psychiatry, 13(1), 17. https://doi.org/10.1186/1471-244X-13-51.CrossRefGoogle ScholarPubMed
Rosen, A. C., Bhat, J. V., Cardenas, V. A., Ehrlich, T. J., Horwege, A. M., Mathalon, D. H., … Yesavage, J. A. (2021). Targeting location relates to treatment response in active but not sham rTMS stimulation. Brain Stimulation, 14(3), 703709. https://doi.org/10.1016/j.brs.2021.04.010.CrossRefGoogle Scholar
Sacchetti, B., Scelfo, B., & Strata, P. (2009). Cerebellum and emotional behavior. Neuroscience, 162(3), 756762. https://doi.org/10.1016/j.neuroscience.2009.01.064.CrossRefGoogle ScholarPubMed
Sankar, A., Melin, A., Lorenzetti, V., Horton, P., Costafreda, S. G., & Fu, C. H. Y. (2018). A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Research Neuroimaging, 279, 3139. https://doi.org/10.1016/j.pscychresns.2018.07.002.CrossRefGoogle ScholarPubMed
Scalabrini, A., Vai, B., Poletti, S., Damiani, S., Mucci, C., Colombo, C., … Northoff, G. (2020). All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 45(12), 20582069. https://doi.org/10.1038/s41386-020-0785-x.CrossRefGoogle Scholar
Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20(3), 236260. https://doi.org/0.1007/s11065-010-9142-x.CrossRefGoogle ScholarPubMed
Siegle, G. J., Carter, C. S., & Thase, M. E. (2006). Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. The American Journal of Psychiatry, 163(4), 735738. https://doi.org/10.1176/appi.ajp.163.4.735.CrossRefGoogle ScholarPubMed
Siegle, G. J., Granholm, E., Ingram, R. E., & Matt, G. E. (2001). Pupillary and reaction time measures of sustained processing of negative information in depression. Biological Psychiatry, 49(7), 624636. https://doi.org/10.1016/s0006-3223(00)01024-6.CrossRefGoogle ScholarPubMed
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2), 198209. https://doi.org/10.1016/j.biopsych.2006.05.048.CrossRefGoogle ScholarPubMed
Siegle, G. J., Thompson, W. K., Collier, A., Berman, S. R., Feldmiller, J., Thase, M. E., & Friedman, E. S. (2012). Toward clinically useful neuroimaging in depression treatment: Prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Archives of General Psychiatry, 69(9), 913924. https://doi.org/10.1001/archgenpsychiatry.2012.65.CrossRefGoogle ScholarPubMed
Sokolov, A. A., Zeidman, P., Erb, M., Pollick, F. E., Fallgatter, A. J., Ryvlin, P., … Pavlova, M. A. (2020). Brain circuits signaling the absence of emotion in body language. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 2086820873. https://doi.org/10.1073/pnas.2007141117.CrossRefGoogle ScholarPubMed
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53(1), 303317. https://doi.org/10.1016/j.neuroimage.2010.06.016.CrossRefGoogle ScholarPubMed
Sreenivas, S., Boehm, S. G., & Linden, D. E. J. (2012). Emotional faces and the default mode network. Neuroscience Letters, 506(2), 229234. https://doi.org/10.1016/j.neulet.2011.11.012.CrossRefGoogle ScholarPubMed
Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831844. https://doi.org/10.1016/j.cortex.2009.11.008.CrossRefGoogle ScholarPubMed
Strata, P. (2015). The emotional cerebellum. Cerebellum (London, England), 14(5), 570577. https://doi.org/10.1007/s12311-015-0649-9.CrossRefGoogle ScholarPubMed
Straub, J., Plener, P. L., Sproeber, N., Sprenger, L., Koelch, M. G., Groen, G., & Abler, B. (2015). Neural correlates of successful psychotherapy of depression in adolescents. Journal of Affective Disorders, 183, 239246. https://doi.org/10.1016/j.jad.2015.05.020.CrossRefGoogle ScholarPubMed
Strege, M. V., Richey, J. A., & Siegle, G. J. (2022). What does ‘staying well’ after depression mean? Chronic low grade symptomatology after treatment for depression is common. Journal of Affective Disorders, 317, 228235. https://doi.org/10.1016/j.jad.2022.08.075.CrossRefGoogle ScholarPubMed
Taylor, D. J., Walters, H. M., Vittengl, J. R., Krebaum, S., & Jarrett, R. B. (2010). Which depressive symptoms remain after response to cognitive therapy of depression and predict relapse and recurrence? Journal of Affective Disorders, 123(1-3), 181187. https://doi.org/10.1016/j.jad.2009.08.007.CrossRefGoogle ScholarPubMed
van Aalst, J., Ceccarini, J., Schramm, G., Van Weehaeghe, D., Rezaei, A., Demyttenaere, K., … Van Laere, K. (2020). Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience. EJNMMI Research, 10(1), 50. https://doi.org/10.1186/s13550-020-00636-y.CrossRefGoogle ScholarPubMed
van Aalst, J., Jennen, L., Demyttenaere, K., Sunaert, S., Koole, M., Ceccarini, J., & Van Laere, K. (2021). Twelve-week yoga vs. aerobic cycling initiation in sedentary healthy subjects: A behavioral and multiparametric interventional PET/MR study. Frontiers in Psychiatry/Frontiers Research Foundation, 12, 739356. https://doi.org/10.3389/fpsyt.2021.739356.Google ScholarPubMed
van der Kolk, B. A. (1994). The body keeps the score: Memory and the evolving psychobiology of posttraumatic stress. Harvard Review of Psychiatry, 1(5), 253265. https://doi.org/10.3109/10673229409017088.CrossRefGoogle ScholarPubMed
Vanderlind, W. M., Millgram, Y., Baskin-Sommers, A. R., Clark, M. S., & Joormann, J. (2020). Understanding positive emotion deficits in depression: From emotion preferences to emotion regulation. Clinical Psychology Review, 76, 111. https://doi.org/10.1016/j.cpr.2020.101826.CrossRefGoogle ScholarPubMed
Villanueva, R. (2012). The cerebellum and neuropsychiatric disorders. Psychiatry Research, 198(3), 527532. https://doi.org/10.1016/j.psychres.2012.02.023.CrossRefGoogle ScholarPubMed
Wassmann, C. (2010). Reflections on the ‘body loop’: Carl Georg Lange's theory of emotion. Cognition & Emotion, 24(6), 974990. https://doi.org/10.1080/02699930903052744.CrossRefGoogle Scholar
Williams, L. M. (2016). Precision psychiatry: A neural circuit taxonomy for depression and anxiety. The Lancet. Psychiatry, 3(5), 472480. https://doi.org/10.1016/S2215-0366(15)00579-9.CrossRefGoogle ScholarPubMed
Won, J., Faroqi-Shah, Y., Callow, D. D., Williams, A., Awoyemi, A., Nielson, K. A., … Smith, J. C. (2021). Association between greater cerebellar network connectivity and improved phonemic fluency performance after exercise training in older adults. The Cerebellum, 20, 114. https://doi.org/10.1007/s12311-020-01218-3.CrossRefGoogle ScholarPubMed
Woods, R. P., Mazziotta, J. C., & Cherry, S. R. (1993). MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography, 17(4), 536546. https://doi.org/10.1097/00004728-199307000-00004.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693. https://doi.org/10.1016/j.conb.2016.06.014.CrossRefGoogle ScholarPubMed
Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L., … Lin, J. J. (2017). Amygdala-hippocampal dynamics during salient information processing. Nature Communications, 8(1), 19. https://doi.org/10.1038/ncomms14413.CrossRefGoogle ScholarPubMed
Zhou, H.-X., Chen, X., Shen, Y.-Q., Li, L., Chen, N.-X., Zhu, Z.-C., … Yan, C.-G. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. NeuroImage, 206, 19. https://doi.org/10.1016/j.neuroimage.2019.116287.CrossRefGoogle ScholarPubMed
Supplementary material: File

Strege et al. supplementary material

Strege et al. supplementary material
Download Strege et al. supplementary material(File)
File 11.6 MB