Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T02:34:18.577Z Has data issue: false hasContentIssue false

Epigenetic aging and PTSD outcomes in the immediate aftermath of trauma

Published online by Cambridge University Press:  23 March 2023

Anthony S. Zannas*
Affiliation:
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Sarah D. Linnstaedt
Affiliation:
Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Xinming An
Affiliation:
Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Jennifer S. Stevens
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
Nathaniel G. Harnett
Affiliation:
Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
Alyssa R. Roeckner
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
Katelyn I. Oliver
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
David R. Rubinow
Affiliation:
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Elisabeth B. Binder
Affiliation:
Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
Karestan C. Koenen
Affiliation:
Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, MA, USA Department of Social and Behavioral Sciences, Harvard School of Public Health, Harvard University, Boston, MA, USA
Kerry J. Ressler
Affiliation:
Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
Samuel A. McLean
Affiliation:
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
*
Author for correspondence: Anthony S. Zannas, E-mail: anthony_zannas@med.unc.edu

Abstract

Background

Psychological trauma exposure and posttraumatic stress disorder (PTSD) have been associated with advanced epigenetic age. However, whether epigenetic aging measured at the time of trauma predicts the subsequent development of PTSD outcomes is unknown. Moreover, the neural substrates underlying posttraumatic outcomes associated with epigenetic aging are unclear.

Methods

We examined a multi-ancestry cohort of women and men (n = 289) who presented to the emergency department (ED) after trauma. Blood DNA was collected at ED presentation, and EPIC DNA methylation arrays were used to assess four widely used metrics of epigenetic aging (HorvathAge, HannumAge, PhenoAge, and GrimAge). PTSD symptoms were evaluated longitudinally at the time of ED presentation and over the ensuing 6 months. Structural and functional neuroimaging was performed 2 weeks after trauma.

Results

After covariate adjustment and correction for multiple comparisons, advanced ED GrimAge predicted increased risk for 6-month probable PTSD diagnosis. Secondary analyses suggested that the prediction of PTSD by GrimAge was driven by worse trajectories for intrusive memories and nightmares. Advanced ED GrimAge was also associated with reduced volume of the whole amygdala and specific amygdala subregions, including the cortico-amygdaloid transition and the cortical and accessory basal nuclei.

Conclusions

Our findings shed new light on the relation between biological aging and trauma-related phenotypes, suggesting that GrimAge measured at the time of trauma predicts PTSD trajectories and is associated with relevant brain alterations. Furthering these findings has the potential to enhance early prevention and treatment of posttraumatic psychiatric sequelae.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adalsteinsson, B. T., Gudnason, H., Aspelund, T., Harris, T. B., Launer, L. J., Eiriksdottir, G., … Gudnason, V. (2012). Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS ONE, 7(10), e46705. doi: 10.1371/journal.pone.0046705CrossRefGoogle ScholarPubMed
Beaudoin, F. L., An, X., Basu, A., Ji, Y., Liu, M., Kessler, R. C., … McLean, S. A. (2023). Use of serial smartphone-based assessments to characterize diverse neuropsychiatric symptom trajectories in a large trauma survivor cohort. Translational Psychiatry, 13(1), 4. doi: 10.1038/s41398-022-02289-yCrossRefGoogle Scholar
Beis, D., von Känel, R., Heimgartner, N., Zuccarella-Hackl, C., Bürkle, A., Ehlert, U., & Wirtz, P. H. (2018). The role of norepinephrine and α-adrenergic receptors in acute stress-induced changes in granulocytes and monocytes. Psychosomatic Medicine, 80(7), 649658.CrossRefGoogle ScholarPubMed
Belsky, D. W., Caspi, A., Corcoran, D. L., Sugden, K., Poulton, R., Arseneault, L., … Moffitt, T. E. (2022). DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife, 11, e73420. doi: 10.7554/eLife.73420CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289300.Google Scholar
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse and Neglect, 27(2), 169190. doi: 10.1016/s0145-2134(02)00541-0CrossRefGoogle ScholarPubMed
Bersani, F. S., Mellon, S. H., Reus, V. I., & Wolkowitz, O. M. (2019). Accelerated aging in serious mental disorders. Current Opinion in Psychiatry, 32(5), 381387. doi: 10.1097/yco.0000000000000525CrossRefGoogle ScholarPubMed
Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. British Medical Journal, 310(6973), 170. doi: 10.1136/bmj.310.6973.170CrossRefGoogle ScholarPubMed
Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K., & Domino, J. L. (2015). The posttraumatic stress disorder checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. Journal of Traumatic Stress, 28(6), 489498. doi: 10.1002/jts.22059CrossRefGoogle ScholarPubMed
Boks, M. P., van Mierlo, H. C., Rutten, B. P., Radstake, T. R., De Witte, L., Geuze, E., … Vermetten, E. (2015). Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology, 51, 506512. doi: 10.1016/j.psyneuen.2014.07.011CrossRefGoogle ScholarPubMed
Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2016). Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders-fifth edition (PCL-5) in veterans. Psychological Assessment, 28(11), 13791391. doi: 10.1037/pas0000254CrossRefGoogle ScholarPubMed
Breslau, N., Kessler, R. C., Chilcoat, H. D., Schultz, L. R., Davis, G. C., & Andreski, P. (1998). Trauma and posttraumatic stress disorder in the community: The 1996 Detroit area survey of trauma. Archives of General Psychiatry, 55(7), 626632. doi: 10.1001/archpsyc.55.7.626CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Chen, E., Beach, S. R., & Miller, G. E. (2016). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(5), 566574. doi: 10.1111/jcpp.12495CrossRefGoogle ScholarPubMed
Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766), 489499. doi: 10.1038/s41586-019-1411-0CrossRefGoogle Scholar
Copeland, W. E., Shanahan, L., McGinnis, E. W., Aberg, K. A., & van den Oord, E. (2022). Early adversities accelerate epigenetic aging into adulthood: A 10-year, within-subject analysis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 63(11), 13081315. doi: 10.1111/jcpp.13575CrossRefGoogle ScholarPubMed
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194. doi: 10.1006/nimg.1998.0395CrossRefGoogle ScholarPubMed
Del Casale, A., Ferracuti, S., Barbetti, A. S., Bargagna, P., Zega, P., Iannuccelli, A., … Pompili, M. (2022). Grey matter volume reductions of the left hippocampus and amygdala in PTSD: A coordinate-based meta-analysis of magnetic resonance imaging studies. Neuropsychobiology, 81(4), 257264. doi: 10.1159/000522003CrossRefGoogle ScholarPubMed
Del Corvo, M., Bongiorni, S., Stefanon, B., Sgorlon, S., Valentini, A., Ajmone Marsan, P., … Chillemi, G. (2020). Genome-wide DNA methylation and gene expression profiles in cows subjected to different stress level as assessed by cortisol in milk. Genes (Basel), 11(8), 850. doi: 10.3390/genes11080850CrossRefGoogle ScholarPubMed
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., … Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111116. doi: 10.1038/s41592-018-0235-4CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The adverse childhood experiences (ACE) study. American Journal of Preventive Medicine, 14(4), 245258.CrossRefGoogle ScholarPubMed
Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., … Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the USA, 102(30), 1060410609. doi: 10.1073/pnas.0500398102CrossRefGoogle ScholarPubMed
Gassen, N. C., Chrousos, G. P., Binder, E. B., & Zannas, A. S. (2016). Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neuroscience and Biobehavioral Reviews, 74(Pt B), 356365. doi: 10.1016/j.neubiorev.2016.06.003CrossRefGoogle ScholarPubMed
Golub, Y., Kaltwasser, S. F., Mauch, C. P., Herrmann, L., Schmidt, U., Holsboer, F., … Wotjak, C. T. (2011). Reduced hippocampus volume in the mouse model of posttraumatic stress disorder. Journal of Psychiatric Research, 45(5), 650659. doi: 10.1016/j.jpsychires.2010.10.014CrossRefGoogle ScholarPubMed
Gray, M. J., Litz, B. T., Hsu, J. L., & Lombardo, T. W. (2004). Psychometric properties of the life events checklist. Assessment, 11(4), 330341. doi: 10.1177/1073191104269954CrossRefGoogle ScholarPubMed
Hamilton, C. M., Strader, L. C., Pratt, J. G., Maiese, D., Hendershot, T., Kwok, R. K., … Haines, J. (2011). The PhenX Toolkit: Get the most from your measures. American Journal of Epidemiology, 174(3), 253260. doi: 10.1093/aje/kwr193CrossRefGoogle ScholarPubMed
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., … Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49(2), 359367. doi: 10.1016/j.molcel.2012.10.016CrossRefGoogle ScholarPubMed
Harnett, N. G., van Rooij, S. J. H., Ely, T. D., Lebois, L. A. M., Murty, V. P., Jovanovic, T., … Stevens, J. S. (2021). Prognostic neuroimaging biomarkers of trauma-related psychopathology: Resting-state fMRI shortly after trauma predicts future PTSD and depression symptoms in the AURORA study. Neuropsychopharmacology, 46(7), 12631271. doi: 10.1038/s41386-020-00946-8CrossRefGoogle ScholarPubMed
Harvanek, Z. M., Fogelman, N., Xu, K., & Sinha, R. (2021). Psychological and biological resilience modulates the effects of stress on epigenetic aging. Translational Psychiatry, 11(1), 601. doi: 10.1038/s41398-021-01735-7CrossRefGoogle ScholarPubMed
Hillary, R. F., Stevenson, A. J., McCartney, D. L., Campbell, A., Walker, R. M., Howard, D. M., … Marioni, R. E. (2020). Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clinical Epigenetics, 12(1), 115. doi: 10.1186/s13148-020-00905-6CrossRefGoogle ScholarPubMed
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. doi: 10.1186/gb-2013-14-10-r115CrossRefGoogle ScholarPubMed
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371384. doi: 10.1038/s41576-018-0004-3CrossRefGoogle ScholarPubMed
Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., … Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86. doi: 10.1186/1471-2105-13-86CrossRefGoogle ScholarPubMed
Howie, H., Rijal, C. M., & Ressler, K. J. (2019). A review of epigenetic contributions to post-traumatic stress disorder. Dialogues in Clinical Neuroscience, 21(4), 417428. doi: 10.31887/DCNS.2019.21.4/kresslerCrossRefGoogle ScholarPubMed
Hugo, V. (2012). Les miserables. San Diego, CA: Canterbury Classics.Google Scholar
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., … Van Leemput, K. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 115, 117137. doi: 10.1016/j.neuroimage.2015.04.042CrossRefGoogle ScholarPubMed
Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118127. doi: 10.1093/biostatistics/kxj037CrossRefGoogle ScholarPubMed
Joyce, B., Gao, T., Zheng, Y., Ma, J., Hwang, S. J., Liu, L., … Lloyd-Jones, D. (2021). Epigenetic age acceleration reflects long-term cardiovascular health. Circulation Research, 129(8), 770781. doi: 10.1161/circresaha.121.318965CrossRefGoogle ScholarPubMed
Kao, C. Y., He, Z., Zannas, A. S., Hahn, O., Kühne, C., Reichel, J. M., … Turck, C. W. (2016). Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. Journal of Psychiatric Research, 76, 7483. doi: 10.1016/j.jpsychires.2016.02.003CrossRefGoogle Scholar
Katrinli, S., Stevens, J., Wani, A. H., Lori, A., Kilaru, V., van Rooij, S. J. H., … Smith, A. K. (2020). Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity. Neuropsychopharmacology, 45(10), 16091616. doi: 10.1038/s41386-020-0700-5CrossRefGoogle ScholarPubMed
Kessler, R. C., Ressler, K. J., House, S. L., Beaudoin, F. L., An, X., Stevens, J. S., … McLean, S. A. (2021). Socio-demographic and trauma-related predictors of PTSD within 8 weeks of a motor vehicle collision in the AURORA study. Molecular Psychiatry, 26(7), 31083121. doi: 10.1038/s41380-020-00911-3CrossRefGoogle ScholarPubMed
Korgaonkar, M. S., Chakouch, C., Breukelaar, I. A., Erlinger, M., Felmingham, K. L., Forbes, D., … Bryant, R. A. (2020). Intrinsic connectomes underlying response to trauma-focused psychotherapy in post-traumatic stress disorder. Translational Psychiatry, 10(1), 270. doi: 10.1038/s41398-020-00938-8CrossRefGoogle ScholarPubMed
Kuan, P. F., Ren, X., Clouston, S., Yang, X., Jonas, K., Kotov, R., … Luft, B. J. (2021). PTSD is associated with accelerated transcriptional aging in World Trade Center responders. Translational Psychiatry, 11(1), 311. doi: 10.1038/s41398-021-01437-0CrossRefGoogle ScholarPubMed
Lang, A. J., & Stein, M. B. (2005). An abbreviated PTSD checklist for use as a screening instrument in primary care. Behaviour Research and Therapy, 43(5), 585594. doi: 10.1016/j.brat.2004.04.005CrossRefGoogle ScholarPubMed
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28(6), 882883. doi: 10.1093/bioinformatics/bts034CrossRefGoogle ScholarPubMed
Leung, C. S., Kosyk, O., Welter, E. M., Dietrich, N., Archer, T. K., & Zannas, A. S. (2022). Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience, 25(9), 104960. doi: 10.1016/j.isci.2022.104960CrossRefGoogle ScholarPubMed
Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., … Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573591. doi: 10.18632/aging.101414CrossRefGoogle ScholarPubMed
Lim, S., Nzegwu, D., & Wright, M. L. (2022). The impact of psychosocial stress from life trauma and racial discrimination on epigenetic aging-A systematic review. Biological Research for Nursing, 24(2), 202215. doi: 10.1177/10998004211060561CrossRefGoogle ScholarPubMed
Linnstaedt, S. D., Zannas, A. S., McLean, S. A., Koenen, K. C., & Ressler, K. J. (2020). Literature review and methodological considerations for understanding circulating risk biomarkers following trauma exposure. Molecular Psychiatry, 25(9), 19861999. doi: 10.1038/s41380-019-0636-5CrossRefGoogle ScholarPubMed
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 11941217. doi: 10.1016/j.cell.2013.05.039CrossRefGoogle ScholarPubMed
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2022). Hallmarks of aging: An expanding universe. Cell, 186(2), 243278. doi: 10.1016/j.cell.2022.11.001CrossRefGoogle Scholar
Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., … Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303327. doi: 10.18632/aging.101684CrossRefGoogle ScholarPubMed
McCrory, C., Fiorito, G., Hernandez, B., Polidoro, S., O'Halloran, A. M., Hever, A., … Kenny, R. A. (2021). GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 76(5), 741749. doi: 10.1093/gerona/glaa286CrossRefGoogle ScholarPubMed
McLean, S. A., Ressler, K., Koenen, K. C., Neylan, T., Germine, L., Jovanovic, T., … Kessler, R. (2020). The AURORA study: A longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Molecular Psychiatry, 25(2), 283296. doi: 10.1038/s41380-019-0581-3CrossRefGoogle ScholarPubMed
Mehta, D., Bruenig, D., Lawford, B., Harvey, W., Carrillo-Roa, T., Morris, C. P., … Voisey, J. (2018). Accelerated DNA methylation aging and increased resilience in veterans: The biological cost for soldiering on. Neurobiology of Stress, 8, 112119. doi: 10.1016/j.ynstr.2018.04.001CrossRefGoogle Scholar
Mehta, D., Bruenig, D., Pierce, J., Sathyanarayanan, A., Stringfellow, R., Miller, O., … Shakespeare-Finch, J. (2022). Recalibrating the epigenetic clock after exposure to trauma: The role of risk and protective psychosocial factors. Journal of Psychiatric Research, 149, 374381. doi: 10.1016/j.jpsychires.2021.11.026CrossRefGoogle ScholarPubMed
Mellon, S. H., Gautam, A., Hammamieh, R., Jett, M., & Wolkowitz, O. M. (2018). Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biological Psychiatry, 83(10), 866875. doi: 10.1016/j.biopsych.2018.02.007CrossRefGoogle ScholarPubMed
Morey, R. A., Clarke, E. K., Haswell, C. C., Phillips, R. D., Clausen, A. N., Mufford, M. S., … LaBar, K. S. (2020). Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(3), 281290. doi: 10.1016/j.bpsc.2019.11.016Google ScholarPubMed
Morey, R. A., Gold, A. L., LaBar, K. S., Beall, S. K., Brown, V. M., Haswell, C. C., … McCarthy, G. (2012). Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Archives of General Psychiatry, 69(11), 11691178. doi: 10.1001/archgenpsychiatry.2012.50CrossRefGoogle Scholar
Na, P. J., Montalvo-Ortiz, J. L., Nagamatsu, S. T., Southwick, S. M., Krystal, J. H., Gelernter, J., … Pietrzak, R. H. (2022). Association of symptoms of posttraumatic stress disorder and GrimAge, an epigenetic marker of mortality risk, in US military veterans. Journal of Clinical Psychiatry, 83(4), 21br14309. doi: 10.4088/JCP.21br14309Google ScholarPubMed
Palma-Gudiel, H., Fañanás, L., Horvath, S., & Zannas, A. S. (2020). Psychosocial stress and epigenetic aging. International Review of Neurobiology, 150, 107128. doi: 10.1016/bs.irn.2019.10.020CrossRefGoogle ScholarPubMed
Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015a). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage, 112, 278287. doi: 10.1016/j.neuroimage.2015.02.063CrossRefGoogle ScholarPubMed
Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015b). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage, 112, 267277. doi: 10.1016/j.neuroimage.2015.02.064CrossRefGoogle ScholarPubMed
Saygin, Z. M., Kliemann, D., Iglesias, J. E., van der Kouwe, A. J. W., Boyd, E., Reuter, M., … Augustinack, J. C. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. Neuroimage, 155, 370382. doi: 10.1016/j.neuroimage.2017.04.046CrossRefGoogle ScholarPubMed
Seo, J. H., Park, H. S., Park, S. S., Kim, C. J., Kim, D. H., & Kim, T. W. (2019). Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Experimental Neurology, 322, 113043. doi: 10.1016/j.expneurol.2019.113043CrossRefGoogle ScholarPubMed
Sheynin, J., Duval, E. R., King, A. P., Angstadt, M., Phan, K. L., Simon, N. M., … Liberzon, I. (2020). Associations between resting-state functional connectivity and treatment response in a randomized clinical trial for posttraumatic stress disorder. Depression and Anxiety, 37(10), 10371046. doi: 10.1002/da.23075CrossRefGoogle Scholar
Smith, A. K., Ratanatharathorn, A., Maihofer, A. X., Naviaux, R. K., Aiello, A. E., Amstadter, A. B., … Nievergelt, C. M. (2020). Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nature Communications, 11(1), 5965. doi: 10.1038/s41467-020-19615-xCrossRefGoogle ScholarPubMed
Star, E. N., Zhu, M., Shi, Z., Liu, H., Pashmforoush, M., Sauve, Y., … Chow, R. L. (2012). Regulation of retinal interneuron subtype identity by the Iroquois homeobox gene Irx6. Development, 139(24), 46444655. doi: 10.1242/dev.081729CrossRefGoogle ScholarPubMed
Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D., & McLaughlin, K. A. (2019). Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biological Psychiatry, 85(3), 268278. doi: 10.1016/j.biopsych.2018.09.008CrossRefGoogle Scholar
Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., & Teschendorff, A. E. (2017). ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33(24), 39823984.CrossRefGoogle ScholarPubMed
U.S. Department of Health and Human Services (2013). The state of aging and health in America 2013. Atlanta, GA: Centers for Disease Control and Prevention.Google Scholar
Vaccarino, V., Goldberg, J., Rooks, C., Shah, A. J., Veledar, E., Faber, T. L., … Bremner, J. D. (2013). Post-traumatic stress disorder and incidence of coronary heart disease: A twin study. Journal of the American College of Cardiology, 62(11), 970978. doi: 10.1016/j.jacc.2013.04.085CrossRefGoogle ScholarPubMed
Verhoeven, J. E., Yang, R., Wolkowitz, O. M., Bersani, F. S., Lindqvist, D., Mellon, S. H., … Hammamieh, R. (2018). Epigenetic age in male combat-exposed war veterans: Associations with posttraumatic stress disorder status. Molecular Neuropsychiatry, 4(2), 9099. doi: 10.1159/000491431Google Scholar
Wang, Z., Hui, Q., Goldberg, J., Smith, N., Kaseer, B., Murrah, N., … Sun, Y. V. (2022). Association between posttraumatic stress disorder and epigenetic age acceleration in a sample of twins. Psychosomatic Medicine, 84(2), 151158. doi: 10.1097/psy.0000000000001028CrossRefGoogle Scholar
Ware, J. Jr., Kosinski, M., & Keller, S. D. (1996). A 12-item short-form health survey: Construction of scales and preliminary tests of reliability and validity. Medical Care, 34(3), 220233. doi: 10.1097/00005650-199603000-00003CrossRefGoogle ScholarPubMed
Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx, B. P., & Keane, T. M. (2013). The life events checklist for DSM-5 (LEC-5) – Extended [measurement instrument]. Retrieved from https://www.ptsd.va.gov/professional/assessment/te-measures/life_events_checklist.aspGoogle Scholar
Wolf, E. J., Logue, M. W., Morrison, F. G., Wilcox, E. S., Stone, A., Schichman, S. A., … Miller, M. W. (2019). Posttraumatic psychopathology and the pace of the epigenetic clock: A longitudinal investigation. Psychological Medicine, 49(5), 791800. doi: 10.1017/s0033291718001411CrossRefGoogle Scholar
Wolf, E. J., Maniates, H., Nugent, N., Maihofer, A. X., Armstrong, D., Ratanatharathorn, A., … Logue, M. W. (2018). Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 92, 123134. doi: 10.1016/j.psyneuen.2017.12.007CrossRefGoogle ScholarPubMed
Yang, R., Wu, G. W. Y., Verhoeven, J. E., Gautam, A., Reus, V. I., Kang, J. I., … Wolkowitz, O. M. (2021). A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. Molecular Psychiatry, 26(9), 49995009. doi: 10.1038/s41380-020-0755-zCrossRefGoogle ScholarPubMed
Yang, R. J., Mozhui, K., Karlsson, R. M., Cameron, H. A., Williams, R. W., & Holmes, A. (2008). Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology, 33(11), 25952604. doi: 10.1038/sj.npp.1301665CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. doi: 10.1152/jn.00338.2011Google ScholarPubMed
Yong, W. S., Hsu, F. M., & Chen, P. Y. (2016). Profiling genome-wide DNA methylation. Epigenetics & Chromatin, 9, 26. doi: 10.1186/s13072-016-0075-3CrossRefGoogle ScholarPubMed
Zannas, A. S. (2019a). Decoding the life story of our epigenome. Epigenomics, 11(11), 12331236. doi: 10.2217/epi-2019-0155CrossRefGoogle ScholarPubMed
Zannas, A. S. (2019b). Epigenetics as a key link between psychosocial stress and aging: Concepts, evidence, mechanisms. Dialogues in Clinical Neuroscience, 21(4), 389396. doi: 10.31887/DCNS.2019.21.4/azannasCrossRefGoogle ScholarPubMed
Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Roh, S., Ressler, K. J., … Mehta, D. (2015a). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16, 266. doi: 10.1186/s13059-015-0828-5CrossRefGoogle Scholar
Zannas, A. S., Provençal, N., & Binder, E. B. (2015b). Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions. Biological Psychiatry, 78(5), 327335. doi: 10.1016/j.biopsych.2015.04.003CrossRefGoogle ScholarPubMed
Zheng, Y., Joyce, B. T., Colicino, E., Liu, L., Zhang, W., Dai, Q., … Hou, L. (2016). Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine, 5, 6873. doi: 10.1016/j.ebiom.2016.02.008CrossRefGoogle ScholarPubMed
Ziobrowski, H. N., Kennedy, C. J., Ustun, B., House, S. L., Beaudoin, F. L., An, X., … van Rooij, S. J. H. (2021). Development and validation of a model to predict posttraumatic stress disorder and major depression after a motor vehicle collision. JAMA Psychiatry, 78(11), 12281237. doi: 10.1001/jamapsychiatry.2021.2427CrossRefGoogle Scholar
Supplementary material: File

Zannas et al. supplementary material 1
Download undefined(File)
File 45.2 KB
Supplementary material: File

Zannas et al. supplementary material 2
Download undefined(File)
File 34.3 KB