Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T03:22:03.861Z Has data issue: false hasContentIssue false

Nitrate in Sea-water and its Estimation by means of Diphenylbenzidine

Published online by Cambridge University Press:  11 May 2009

W. R. G. Atkins
Affiliation:
Head of the Department of General Physiology at the Plymouth Laboratory

Extract

1. The diphenylbenzidine reaction of Letts and Rea has been examined and is recommended for use in sea-water; 2·5 ml. of sea-water is mixed with 6·0 ml. of the purest strong sulphuric acid and then allowed to cool. Subsequently 1·5 ml. of a sulphuric acid solution of diphenylbenzidine is added, the concentration being 20 mg. per 100 ml. of acid. The colour should be compared, after 20-24 hours, with a standard solution made up by adding a definite quantity of nitrate to the sea-water. A blank correction should be used. Diphenylbenzidine used must be recrystallised from boiling toluene.

2. If the sulphuric acid used is found to give a blue colour with diphenylbeniddine, this may be removed, if not too intense, by warming the acid for a few minutes. With a more intense blue the nitric acid-present may be eliminated by previous cautious treatment with hydrogen sulphide. Phosphoric acid may be used instead of sulphuric acid with fresh water, but not with sea-water.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1932

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkins, W. R. G. 1930. Seasonal changes in the nitrite content of sea-water. Journ. Mar. Biol. Assoc, N.S., 16, pp. 515518.Google Scholar
Atkins, W. R. G. 1930. Seasonal variations in the phosphate and silicate content of sea-water in relation to the phytoplankton crop. Pt. V. Journ. Mar. Biol. Assoc., N.S., 16, pp. 821852.Google Scholar
Atkins, W. R. G. 1932. The preparation of sulphuric acid free from nitric acid. Nature, 129, p. 98.CrossRefGoogle Scholar
Bigelow, H. B., and Leslie, M. 1930. Reconnaissance of the waters and plankton of Monterey Bay, July, 1928. Bull. Museum of Comparative Zöol. at Harvard Coll., 70, pp. 429581.Google Scholar
Bini, C. 1929. Di alcune caratteristiche del Mar Rosso sui riguardi del ciclo dell' azoto. Atti R. Accad. dei Lincei. Series 7, 9, pp. 11281133.Google Scholar
Böhnecke, G., Hentschel, E., and Wattenberg, H. 1930. über die hydrographischen, chemischen und biologischen Verhältnisse an der Meeresoberfläche zwischen Island und Grönland. Ann. d. Hydrog. usw., 58, Heft 7, pp. 233250.Google Scholar
Brandt, K. 1915. über den Nitratgehalt des Ozeanwassers und seine biologische Bedeutung. Nova Acta. Abh. der Kaiserl. Leop.-Carol. Deutschen Akad. d. Naturforscher, Bd. C, Nr. 4, pp. 156.Google Scholar
Brandt, K. 1927. Stickstoffverbindungen im Meere. 1. Wiss. Meeres-untersuch. Abt. Kiel, 20, pp. 201292.Google Scholar
Brandt, K. 1929. Phosphate und Stickstoffverbindungen als Minimumstoffe für die Produktion im Meere. Rapp. et Procès-Verbaux d. Réunions. Conseil permanent internat. pour l'exploration de la Mer, 53, pp. 535.Google Scholar
Buch, K. 1923. Methodisches iiber die bestimmung von stickstoffverbindungen im wasser. Havsforskningsinstitutets Skrift, Helsingfors, No. 181, pp. 122.Google Scholar
Buch, K. 1929. Über die Bestimmungen von Stickstoffverbindungen und Phosphaten im Meerwasser. See Brandt, 1929, pp. 3652.Google Scholar
Cooper, L. H. N. 1932. The reduced strychnine reagent for the determination of nitrate in the sea. Jour. Mar. Biol. Assoc, N.S., 18, No. 1, pp. 161166.Google Scholar
Denigès, G. 1911. A rapid test for nitrites and nitrates in water by means of a new hydro-strychnine reagent. Bull. Soc. Chim. France, 1911, 9, pp. 544546. Cited from J. Soc. Chem. Ind., 30, p. 827.Google Scholar
Ekkert, Lad. 1925. The diphenylamine test. Pharm. Zentralhalle, 66, pp. 649650. Cited from Chemical Abstracts.Google Scholar
Gad-Andresen, K. L. 1928. A method for quantitative determination of ammonia, nitrate and nitrite, together with other nitrogenous compounds, in sea-water. Cons, permanent internat, pour l'Expl. de la Mer. Publ. de Circonstance, No. 82, pp. 122.Google Scholar
Giral, J. 1929. Méthodes pour l'etude des phosphates et des matières azotées dans l'eau de mer. See Brandt, 1929, pp. 53—67.Google Scholar
Gran, H. H. 1930. The spring growth of the plankton at Moere in 1928–29 and at Lofoten in 1929 in relation to its limiting factors. Norse Videnskaps-Akad. i Oslo. 1. Mat. Naturv. Kl., No. 5, pp. 177.Google Scholar
Harvey, H. W. 1925. Oxidation in sea-water. Journ. Mar. BioL Assoc., N.S., 13, pp. 953—969.Google Scholar
Harvey, H. W. 1926. Nitrate in the sea. Loc. cit., 14, pp. 7188.Google Scholar
Harvey, H. W. 1928. Nitrate in the sea. II. Loc. cit., 15, pp. 183190.Google Scholar
Harvey, H. W. 1929. Methods of estimating phosphates and nitrates in sea-water. See Brandt, 1929, pp. 6874.Google Scholar
Hookee, S. C. 1888. Carbazol as a reagent for estimation of nitrates. Ber. d. deut. chem. Ges., 21, p. 3302. Cited.Google Scholar
Ibañez, O. G. 1929. Determinacion del nitrogeno en sus formas amoniacal, nitroso y nitrico, en el agua de mar. Madrid, Ministerio de Fomento. Notas y résumenes, Ser. II, Nr. 36, pp. 124.Google Scholar
Issatchenko, B. 1926. Sur la nitrification dans les mers. Compt. rend. Acad. Sc. Paris, 182, p. 185.Google Scholar
Kehrmann, F., and Micewitz, St. 1912. Cause of the blue colour produced by nitrous acid and other oxidising agents in sulphuric acid solutions of diphenylamine. Ber. d. deut. chem. Ges., 45, p. 2641. Cited from J. Chem. Soc, 1912, A i, 1020.CrossRefGoogle Scholar
Kolthoff, I. M., and Sarver, L. A. 1930. Properties of diphenylamine and diphenylbenzidine as oxidation-reduction indicators. J. Amer. Chem. Soc, 52, pp. 41794191.Google Scholar
Kopp, B. 1872. Diphenylamine as a reagent for the estimation of nitrites and nitrates. Ber. d. deut. chem. Ges., 5, p. 284. Cited.Google Scholar
Kreps, E., and Verjbinskaya, N. 1930. Seasonal changes in the phosphate and nitrate content and in hydrogen ion concentration in the Barents Sea. J. du Conseil. Internat. pour l'Expl. de la Mer, 5, pp. 329346.Google Scholar
Letts, E. A., and Rea, F. W. 1914. An extremely delicate colorimetric method for detecting and estimating nitrates and nitrites. J. Chem. Soc, 105, pp. 11571161.Google Scholar
Lindo, D. 1888. Phenol and some allied bodies as tests for nitrites, nitrates and chlorates. Chem. News, 58, pp. 1, 15, 28. Cited.Google Scholar
Moberg, E. G. 1928. The interrelation between diatoms, their chemical environment, and upwelling water in the sea, off the coast of Southern California. Proc. Nat. Acad. Sci., 14, pp. 511518.Google Scholar
Moberg, E. G. 1929. The phosphate, silica and fixed nitrogen content of sea-water. Proc. 3rd Pan-Pacific Science Congress, Tokyo, 1926, pp. 229232.Google Scholar
Orr, A. P. 1926. The nitrite content of sea-water. Jour. Mar. Biol. Assoc., N.S., 14, pp. 5561.Google Scholar
Orton, J. H. 1924. Ministry of Agric. and Fisheries Invest., Series 2, 6, No. 3, p. 166.Google Scholar
Riehm, H. 1930. Systematic study of the reaction of diphenylamine sulphate with nitrates in the presence of chlorides, especially with respect to the determination of nitrates in soils. Z. anal. Chem., 81, pp. 353377.Google Scholar
Riehm, H. 1930. Systematic study of the reaction of diphenylbenzidine in sulphuric acid solution with nitrates in the presence of chloride. Z. anal. Cliem., 81, pp. 439447. Cited.Google Scholar
Ruud, J. T. 1930. Nitrates and phosphates in the Southern Seas. J. du Cons. Internat. pour l'Expl. de la Mer, 5, pp. 347360.CrossRefGoogle Scholar
Smith, L. 1917. The use of diphenylamine and diphenylbenzidine for colorimetric estimations. Zeitschr. f. anal. Chem., 56, pp. 2842. Cited from J. Chem. Soc, 112, ii, p. 217.Google Scholar
Snell, F. D. 1921. Colorimetric analysis. New York.Google Scholar
Sprengel, H. 1864. Use of phenolsulphonic acid for estimation of nitrate. Pogg. Ann., 121, p. 188. Cited.Google Scholar
Sund, O. 1929. The determination of nitrates in sea-water. See Brandt, 1929, pp. 8089.Google Scholar
Thompson, T. C, and Johnson, M. W. 1930. The sea-water at the Puget Sound Biological Station from September 1928 to September 1929. Publ. Puget Sound Biol. Sta., 7, pp. 345368.Google Scholar
Thomsen, Helge. 1931. Nitrate and phosphate contents of Mediterranean water. Report on the Danish Oceanographical Expeditions, 1908–1910, to the Mediterranean and adjacent seas. 3, Pt. 6, pp. 114.Google Scholar
Tillmans, J. 1910. Detection and estimation of nitric acid in milk by diphenylamine-sulphuric acid. Z. Nahr. Genussm., 20, p. 676. Cited from J. Soc. Chem. Ind., 1911, 30, p. 44.Google Scholar
Tillmans, J., and Sutthoff, W. 1911. Method of detecting and determining nitric and nitrous acids in water. Z. anal. Chem., 1911, 50, pp. 473495. Cited from J. Soc. Chem. Ind., 1911, 30, p. 918.Google Scholar
Tschigieine, N., and Daniltchenko, P. 1930. De l'azote et ses composes dans le mer Noire. Trav. de la Stat. Biol. de Sébastopol., 2, pp. 116.Google Scholar
Wattenberg, H. 1929. Die Phosphat- und Nitrat- Untersuchungen der Deutschen Atlantischen Expedition auf V.S. Meteor. See Brandt, 1929, pp. 9094.Google Scholar
Wieland, H. 1913. Über den Mechanismus der blauen Farbreaktion des Diphenylamins. XVI. Uber ditertiare Hydrazine. Ber. d. deut. chem. Ges., 46 (3), pp. 32963303.Google Scholar
Winklee, L. W. 1916. Der Jodid- und Jodat- Iongehalt des Meer-wassers. Z. f. angew. Chem., 29 (1), pp. 205207.Google Scholar
Yoe, J. H. 1928. Photometric chemical analysis. Vol. 1, p. 316. New York.Google Scholar