Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T05:53:37.678Z Has data issue: false hasContentIssue false

Examples of Mesozoic and Cenozoic Bathysiphon (Foraminiferida) from the Pacific Rim and the taxonomic status of Terebellina Ulrich, 1904

Published online by Cambridge University Press:  14 July 2015

William Miller III*
Affiliation:
Geology Department, Humboldt State University, Arcata, California 95521

Abstract

The generic name Terebellina was proposed by E. O. Ulrich for large (> 100 mm long, several millimeters wide), siliceous, tubular fossils from Cretaceous rocks of southern Alaska. Originally interpreted as annelid tubes, these unusual agglutinated fossils are locally abundant in Triassic to Neogene flysch and other basinal deposits of the Pacific borderlands. Other generic names employed for the same fossils include Torlessia (used in New Zealand) and Yokoia (in Japan). Although most authors have regarded the tubes as body fossils of worms, some workers have speculated recently that Pacific Terebellina are really large bathysiphonid foraminiferids. At the same time, the name has been co-opted by trace fossil workers for thick-walled, grain-lined burrows usually occurring in outer-shelf to slope facies.

Based on comparisons with modern and fossil bathysiphonids, including a new species (Bathysiphon harperi) from the Cretaceous of southwestern Oregon, the body fossils called Terebellina are here reinterpreted as large species of Bathysiphon, and the name Terebellina is therefore a junior synonym of this foraminiferid genus. Except for the compression and recrystallization of tubes, Pacific Terebellina resemble very closely the tests of larger species of modern Bathysiphon. Terebellina should not be salvaged for use as an ichnogenus. Most of the trace fossils identified with this name in the recent literature could be accommodated in other established ichnogenera, primarily Palaeophycus (where grain-lined burrows occur individually and are dominantly horizontal) and Schaubcylindrichnus (where they occur in curved bundles).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, K. 1950. Cretaceous Foraminifera from Teshio, Hokkaido. Short Papers from the Institute of Geology and Paleontology, Tohoku University, 2:1322.Google Scholar
Avnimelech, M. 1952. Revision of the tubular Monothalamia. Contributions from the Cushman Foundation for Foraminiferal Research, 3:6068.Google Scholar
Ballance, P. F., Gregory, M. R., Gibson, G. W., Chaproniere, G. C. H., Kadar, A. P., and Sameshima, T. 1984. A late Miocene and early Pliocene upper slope-to-shelf sequence of calcareous fine sediment from the Pacific margin of New Zealand, p. 331342. In Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep-Water Processes and Facies. Blackwell Scientific Publications, Oxford.Google Scholar
Bather, F. A. 1905. The Mount Torlesse annelid. Geological Magazine, 2:532541.CrossRefGoogle Scholar
Begg, J. G., Cave, M. P., and Campbell, J. D. 1983. Terebellina mackayi Bather in Oretian Murihiku rocks, Wairaki Hills, Southland. New Zealand Journal of Geology and Geophysics, 26:121122.Google Scholar
Blake, M. C. Jr., Engebretson, D. C., Jayko, A. S., and Jones, D. L. 1985. Tectonostratigraphic terranes in southwest Oregon, p. 147157. In Howell, D. G. (ed.), Tectonostratigraphic Terranes of the Circum-Pacific Region. Circum-Pacific Council for Energy and Mineral Resources, Houston.Google Scholar
Brady, H. B. 1881. Notes on some of the reticularian Rhizopoda of the Challenger Expedition. Part III. Quarterly Journal of Microscopical Science, new series, 21:3171.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Brouwer, J. 1965. Agglutinated foraminiferal faunas from some turbiditic sequences, I. Koninklije Nederlandse Akademie van Weterschappen, Proceedings Series B, 68:309334.Google Scholar
Campbell, J. K., and Campbell, J. D. 1970. Triassic tube fossils from Tuapeka rocks, Akatore, South Otago. New Zealand Journal of Geology and Geophysics, 13:392399.Google Scholar
Campbell, J. D., and Pringle, I. J. 1982. An association of Torlessia and late Middle-early Upper Triassic fossils at Pudding Hill Stream, central Canterbury. Journal of the Royal Society of New Zealand, 12:510.Google Scholar
Campbell, J. D., and Warren, G. 1965. Fossil localities of the Torlesse Group in the South Island. Transactions of the Royal Society of New Zealand, Geology, 3:99137.Google Scholar
Cave, M. P. 1982. Paleoecology and biostratinomy of the Upper Triassic tube fossils Titahia corrugata and Terebellina mackayi . Mauri Ora, 10:3541.Google Scholar
Chamberlain, C. K. 1976a. Field guide to the trace fossils of the Dakota Hogback at the south end of Spring Canyon Dam, Horsetooth Reservoir, southwest of Fort Collins, Colorado and Field guide to the trace fossils of the Dakota Hogback along Alameda Avenue, west of Denver, Colorado, p. 3443. In Chamberlain, C. K. and Frey, R. W., Seminar on Trace Fossils. U. S. Geological Survey, Golden, Colorado.Google Scholar
Chamberlain, C. K. 1976b. Field guide to the trace fossils of the Cretaceous Dakota Hogback along Alameda Avenue, west of Denver, Colorado. Colorado School of Mines Professional Contributions, 8:242250.Google Scholar
Chamberlain, C. K. 1978. Recognition of trace fossils in cores, p. 119166. In Basan, P. B. (ed.), Trace Fossil Concepts. Society of Economic Paleontologists and Mineralogists Short Course No. 5, Oklahoma City.Google Scholar
Christiansen, O. 1971. Notes on the biology of Foraminifera. Vie et Milieu, Troisième Symposium Européen de Biologie Marine, supplément, 22:465478.Google Scholar
Crimes, T. P., and Uchman, A. 1993. A concentration of exceptionally well-preserved large tubular foraminifera in the Eocene Zumaya flysch, northern Spain. Geological Magazine, 130:851853.Google Scholar
Cushman, J. A. 1910. A monograph of the Foraminifera of the North Pacific Ocean, Pt. 1, Astrorhizidae and Lituolidae. U.S. National Museum Bulletin 71, 108 p.Google Scholar
Cushman, J. A., and Goudkoff, P. P. 1944. Some Foraminifera from the Upper Cretaceous of California. Contributions from the Cushman Laboratory for Foraminiferal Research, 20:5363.Google Scholar
Danner, W. R. 1955. Some fossil worm tubes of western Washington. Rocks and Minerals, September–October:451457.Google Scholar
Danner, W. R. 1975. Mesozoic-Cenozoic agglutinated tube fossil Terebellina . Geological Society of America Abstracts with Programs, 7(7):1045.Google Scholar
Davis, G. H. 1984. Structural Geology of Rocks and Regions. John Wiley and Sons, New York, 492 p.Google Scholar
Delage, Y., and Hérouard, E. 1896. Traité de Zoologie Concrète, Tome 1, La Cellule et les Protozoaires. Schleicher Frères, Paris, 584 p.Google Scholar
Eichwald, C. E. von. 1830. Zoologia Specialis, Volume 2. D. E. Eichwaldus, Vilnae, 323 p.Google Scholar
Frey, R. W., and Goldring, R. 1992. Marine event beds and re-colonization surfaces as revealed by trace fossil analysis. Geological Magazine, 129:325335.Google Scholar
Frey, R. W., and Howard, J. D. 1981. Conichnus and Schaubcylindrichnus: redefined trace fossils from the Upper Cretaceous of the Western Interior. Journal of Paleontology, 55:800804.Google Scholar
Gage, J.D., and Tyler, P. A. 1991. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press, Cambridge, 504 p.Google Scholar
Gooday, A. J. 1983. Bathysiphon rusticus de Folin, 1886 and Bathysiphon folini n. sp.: two large agglutinated foraminifers abundant in abyssal NE Atlantic epibenthic sledge samples. Journal of Foraminiferal Research, 13:262276.Google Scholar
Gooday, A. J. 1988a. The genus Bathysiphon (Protista, Foraminiferida) in the NE Atlantic: revision of some species described by de Folin (1886). Journal of Natural History, 22:7193.Google Scholar
Gooday, A. J. 1988b. The genus Bathysiphon (Protista, Foraminiferida) in the north-east Atlantic: a neotype for B. filiformis G. O. and M. Sars, 1872 and the description of a new species. Journal of Natural History, 22:95105.Google Scholar
Gooday, A. J., and Claugher, D. 1989. The genus Bathysiphon in the northeast Atlantic: SEM observations on the wall structure of seven species. Journal of Natural History, 23:591611.Google Scholar
Gooday, A. J., Levin, L. A., Thomas, C. L., and Hecker, B. 1992. The distribution and ecology of Bathysiphon filiformis Sars and B. major de Folin (Protista, Foraminiferida) on the continental slope off North Carolina. Journal of Foraminiferal Research, 22:129146.CrossRefGoogle Scholar
Gregory, M. R. 1977. Terebellina (=Torlessia) and some other enigmatic tubular fossils—their taxonomic affinities and stratigraphic utility. New Zealand Geological Society Annual Conference Abstracts, 1977 (unpaged).Google Scholar
Hall, J. 1847. Palaeontology of New-York, Volume 1. C. van Benthuysen, Albany, 339 p. + 87 pl. Google Scholar
Hatai, K., and Noda, H. 1975. An armored worm from the Miocene Yoko-o Formation, Nagano Prefecture, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, 100:209219.Google Scholar
Hatai, K., and Saito, Y. 1962. A problematica from the Miocene Bessho Formation in Hagishima County, Nagano Prefecture, Japan. Japanese Journal of Geology and Geography, 33:243250.Google Scholar
Hatai, K., Noda, H., and Ogasahara, K. 1972. Scaphopoda-like fossils from the Udo Formation (Miocene) of Miyazaki Prefecture, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, 87:409413.Google Scholar
Hiltermann, H. 1968. Neure paläontologische Daten zum Flysch-Problem. Erdoel-Erdgas-Zeitschrift, 84:151157.Google Scholar
Hofker, J. 1930. The Foraminifera of the Siboga Expedition, Part 2. E. J. Brill, Leiden, 170 p. + 26 pl.Google Scholar
Hofker, J. 1972. Primitive Agglutinated Foraminifera. E. J. Brill, Leiden, 95 p. + 27 pl.Google Scholar
Howell, B. F. 1962. Worms, p. W144W177. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Jaworski, E. 1915. Die systematische and stratigraphische Stellung von “Torlessia mackayi” Bath. (=Terebellina) von Neuseeland. Centralblatt fur Mineralogie, Geologie und Paläontologie, 1915:504512.Google Scholar
Jones, D. L., and Clark, S. H. B. 1973. Upper Cretaceous (Maestrichtian) fossils from the Kenai–Chugach Mountains, Kodiak and Shumagin Islands, southern Alaska. U.S. Geological Survey Journal of Research, 1:125136.Google Scholar
Katto, J. 1960. Some problematica from the so-called unknown Mesozoic strata of the southern part of Shikoku, Japan. Science Reports, Tohoku University, Special Volume 4:323334.Google Scholar
Kleinpell, R. M. 1938. Miocene Stratigraphy of California. American Association of Petroleum Geologists, Tulsa, 450 p.Google Scholar
Le Calvez, J. 1938. Un foraminifère géant Bathysiphon filiformis G.-O. Sars. Archives de Zoologie Experimentaire et Générale, 79:8288.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Foraminiferida, volume 1, p. C55C511. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. C, Protista. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1988. Foraminiferal Genera and Their Classification. Van Nostrand Reinhold Co., New York, text volume 970 p., plates volume 212 p. + 847 pl.Google Scholar
Malecki, J. 1973. Bathysiphons from the Eocene of the Carpathian flysch, Poland. Acta Palaeontologica Polonica, 18:163172.Google Scholar
McCann, T., and Pickerill, R. K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62:330348.CrossRefGoogle Scholar
Miller, W. III. 1986. New species of Bathysiphon (Foraminiferida: Textulariina) from Franciscan flysch deposits, northernmost California. Tulane Studies in Geology and Paleontology, 19:9194.Google Scholar
Miller, W. III. 1987. Giant species of Bathysiphon (Foraminiferida: Textulariina) from Franciscan flysch and its implications. Geological Society of America Abstracts with Programs, 19:433.Google Scholar
Miller, W. III. 1988a. Giant Bathysiphon (Foraminiferida) from Cretaceous turbidites, northern California. Lethaia, 21:363374.Google Scholar
Miller, W. III. 1988b. Giant agglutinated foraminiferids from Franciscan turbidites at Redwood Creek, northwestern California, with the description of a new species of Bathysiphon . Tulane Studies in Geology and Paleontology, 21:8184.Google Scholar
Miller, W. III. 1989. Paleontology of Franciscan flysch at Point Saint George, northern California, p. 4752. In Aalto, K. R. and Harper, G. D. (eds.), Geologic Evolution of the Northernmost Coast Ranges and Western Klamath Mountains, California. 28th International Geological Congress, Field Trip Guidebook T308.Google Scholar
Miller, W. III. 1991. Bathysiphonid (Protista: Foraminiferida) localities in Franciscan flysch, northern California, with a redescription of Bathysiphon aaltoi Miller, 1986. Tulane Studies in Geology and Paleontology, 24:7178.Google Scholar
Miller, W. III. 1993. Trace fossil zonation in Cretaceous turbidite facies, northern California. Ichnos, 3:1128.Google Scholar
Miller, W. III. In press. “Terebellina” (=Schaubcylindrichnus freyi ichnosp. nov.) in Pleistocans outer-shelf mudrocks of northern California. Ichnos.Google Scholar
Moore, P. R. 1987. Terebellina—sponge or foraminiferid? A comparison with Makiyama and Bathysiphon . New Zealand Geological Survey Record, 20:4350.Google Scholar
Ogle, B. A. 1953. Geology of Eel River Valley area, Humboldt County, California. California Division of Mines Bulletin 164, 128 p.Google Scholar
Pemberton, S. G. (ed.). 1992. Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists Core Workshop No. 17, 429 p.Google Scholar
Pemberton, S. G., van Wagoner, J. D., and Wach, G. D. 1992. Ichnofacies of a wave-dominated shoreline, p. 339382. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists Core Workshop No. 17.Google Scholar
Rindsberg, A. K. 1992. Holocene ichnology of eastern Mississippi Sound, Alabama. Geological Survey of Alabama Circular 167, 75 p.Google Scholar
Sacco, F. 1893. Le genre Bathysiphon à l'etat fossile. Bulletin de Société Géologique de France, 21:165169.Google Scholar
Sars, G. O. 1872. Undersøgelser over Hardangerfjordens fauna. Forhandlinger i Videnskabsselskabet i Kristiania, 1871:246286.Google Scholar
Speden, I. G. 1976. Fossil localities in Torlesse rocks of the North Island, New Zealand. Journal of the Royal Society of New Zealand, 6:7391.Google Scholar
Ulrich, E. O. 1904. Fossils and age of the Yakutat Formation, p. 125146. In Emerson, B. K., Palache, C., Dall, W. H., Ulrich, E. O., and Knowlton, F. H., Alaska Volume 4, Geology and Paleontology. Doubleday, Page and Co., New York. (Reissued in 1910 as Harriman Alaska Series Volume 4, Geology and Paleontology. Smithsonian Institution, Washington, D.C.) Google Scholar
Vyalov, O. S. 1968. Deyaki mirkuvannya pro klasifikatsiyu kremenistikh foraminifer. Dopovidi Akademiï Nauk Ukraiïns'koï RSR, Series B, Geologiya, Geofizika, Khimiya ta Biologiya, 1968:36.Google Scholar
Webby, B. D. 1967. Tube fossils from the Triassic of south-west Wellington, N.Z. Transactions of the Royal Society of New Zealand, Geology, 5:181191.Google Scholar