Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T18:13:36.836Z Has data issue: false hasContentIssue false

Effects of co-infection with Clonorchis sinensis on T cell exhaustion levels in patients with chronic hepatitis B

Published online by Cambridge University Press:  24 January 2024

Huimin Dong
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Yuan Liao
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Mei Shang
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Yuechun Fu
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Hongbin Zhang
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Minqi Luo
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Bo Hu*
Affiliation:
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
*
Corresponding author: Bo Hu; Email: hubo@mail.sysu.edu.cn

Abstract

To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Huimin Dong and Yuan Liao contributed equally to this work.

References

Antoine, P, Varner, V, Carville, A, Connole, M, Marchant, A and Kaur, A (2014) Postnatal acquisition of primary rhesus cytomegalovirus infection is associated with prolonged virus shedding and impaired CD4+ T lymphocyte function. Journal of Infectious Diseases 210(7), 10901099. https://doi.org/10.1093/infdis/jiu215CrossRefGoogle ScholarPubMed
Bachmann, MF, Wolint, P, Walton, S, Schwarz, K and Oxenius, A (2007) Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. European Journal of Immunology 37(6), 15021512. https://doi.org/10.1002/eji.200637023CrossRefGoogle ScholarPubMed
Bengsch, B, Martin, B and Thimme, R (2014) Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. Journal of Hepatology 61(6), 12121219. https://doi.org/10.1016/j.jhep.2014.07.005CrossRefGoogle ScholarPubMed
Bertoletti, A and Naoumov, NV (2003) Translation of immunological knowledge into better treatments of chronic hepatitis B. Journal of Hepatology 39(1), 115124. https://doi.org/10.1016/S0168-8278(03)00126-0CrossRefGoogle ScholarPubMed
Bertoletti, A and Gehring, AJ (2006) The immune response during hepatitis B virus infection. Journal of General Virology 87(6), 14391449. https://doi.org/10.1099/vir.0.81920-0CrossRefGoogle ScholarPubMed
Bertoletti, A and Ferrari, C (2012) Innate and adaptive immune responses in chronic hepatitis B virus infections: Towards restoration of immune control of viral infection. Postgraduate Medical Journal 89(1051), 294304. https://doi.org/10.1136/gutjnl-2011-301073CrossRefGoogle Scholar
Boni, C, Laccabue, D, Lampertico, P, Giuberti, T, Viganò, M, Schivazappa, S, Alfieri, A, Pesci, M, Gaeta, GB, Brancaccio, G, Colombo, M, Missale, G and Ferrari, C (2012) Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 143(4), 963973. https://doi.org/10.1053/j.gastro.2012.07.014CrossRefGoogle ScholarPubMed
Botelho, M, Ferreira, AC, Oliveira, MJ, Domingues, A, Machado, JC and Da Costa, JMC (2009) Schistosoma haematobium total antigen induces increased proliferation, migration and invasion, and decreases apoptosis of normal epithelial cells. International Journal for Parasitology 39(10), 10831091. https://doi.org/10.1016/j.ijpara.2009.02.016CrossRefGoogle ScholarPubMed
Brahmer, JR, Drake, CG, Wollner, I, Powderly, JD, Picus, J, Sharfman, WH, Stankevich, E, Pons, A, Salay, TM, McMiller, TL, Gilson, MM, Wang, C, Selby, M, Taube, JM, Anders, R, Chen, L, Korman, AJ, Pardoll, DM, Lowy, I and Topalian, SL (2010) Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology 28(19), 31673175. https://doi.org/10.1200/JCO.2009.26.7609CrossRefGoogle ScholarPubMed
Chen, J, Xu, M, Zhou, D, Song, H, Wang, C and Zhu, X (2012) Canine and feline parasitic zoonoses in China. Parasites & Vectors 5(1), 152. https://doi.org/10.1186/1756-3305-5-152CrossRefGoogle ScholarPubMed
Chisari, FV, Isogawa, M and Wieland, SF (2010) Pathogenesis of hepatitis B virus infection. Patholologie Biologie (Paris) 58(4), 258266. https://doi.org/10.1016/j.patbio.2009.11.001CrossRefGoogle ScholarPubMed
Choi, BI, Han, JK, Hong, ST and Lee, KH (2004) Clonorchiasis and cholangiocarcinoma: Etiologic relationship and imaging diagnosis. Clinical Microbiology Reviews 17(3), 540552. https://doi.org/10.1128/CMR.17.3.540-552.2004CrossRefGoogle ScholarPubMed
Crawford, A and Wherry, EJ (2009) The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Current Opinion in Immunology 21(2), 179186. https://doi.org/10.1016/j.coi.2009.01.010CrossRefGoogle ScholarPubMed
Deng, ZH, Fang, YY, Zhang, QM, Mao, Q, Pei, FQ and Liu, MR (2020) The control of clonorchiasis in Guangdong Province, southern China. Acta Tropica 202, 105246. https://doi.org/10.1016/j.actatropica.2019.105246CrossRefGoogle ScholarPubMed
Evans, A, Riva, A, Cooksley, H, Phillips, S, Puranik, S, Nathwani, A, Brett, S, Chokshi, S and Naoumov, NV (2008) Programmed death 1 expression during antiviral treatment of chronic hepatitis B: Impact of hepatitis B e-antigen seroconversion. Hepatology 48(3), 759769. https://doi.org/10.1002/hep.22419CrossRefGoogle ScholarPubMed
Ferrari, C (2020) HBV and the immune response. Liver International 35(Suppl 1), 121128. https://doi.org/10.1111/liv.12749CrossRefGoogle Scholar
Fisicaro, P, Boni, C, Barili, V, Laccabue, D and Ferrari, C (2018) Strategies to overcome HBV-specific T cell exhaustion: Checkpoint inhibitors and metabolic re-programming. Current Opinion in Virology 30, 18. https://doi.org/10.1016/j.coviro.2018.01.003CrossRefGoogle ScholarPubMed
Fisicaro, P, Barili, V, Rossi, M, Montali, I, Vecchi, A, Acerbi, G, Laccabue, D, Zecca, A, Penna, A, Missale, G, Ferrari, C and Boni, C (2020) Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Frontiers in Immunology 11, 849. https://doi.org/10.3389/fimmu.2020.00849CrossRefGoogle ScholarPubMed
Gallimore, A, Glithero, A, Godkin, A, Tissot, AC, Plückthun, A, Elliott, T, Hengartner, H and Zinkernagel, R (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. Journal of Experimental Medicine 187(9), 13831393. https://doi.org/10.1084/jem.187.9.1383CrossRefGoogle ScholarPubMed
Golden-Mason, L, Palmer, BE, Kassam, N, Townshend-Bulson, L, Livingston, S, McMahon, BJ, Castelblanco, N, Kuchroo, V, Gretch, DR and Rosen, HR (2009) Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. Journal of Virology 83(18), 91229130. https://doi.org/10.1128/JVI.00639-09.CrossRefGoogle Scholar
Gonçalves, RM, Salmazi, KC, Santos, BAN, Bastos, MS, Rocha, SC, Boscardin, SB, Silber, AM, Kallás, EG, Ferreira, MU and Scopel, KKG (2010) CD4+ CD25+ Foxp3+ Regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: Do different parasite species elicit similar host responses? Infection and Immunity 78(11), 47634772. https://doi.org/10.1128/IAI.00578-10CrossRefGoogle ScholarPubMed
Hartzell, S, Bin, S, Cantarelli, C, Haverly, M, Manrique, J, Angeletti, A, Manna, G, Murphy, B, Zhang, W, Levitsky, J, Gallon, L, Yu, SM and Cravedi, P (2020) Kidney failure associates with T cell exhaustion and imbalanced follicular helper T cells. Frontiers in Immunology 11, 583702. https://doi.org/10.3389/fimmu.2020.583702CrossRefGoogle Scholar
Jackson, SR, Berrien-Elliott, MM, Meyer, JM, Wherry, EJ and Teague, RM (2013) CD8+ T cell exhaustion during persistent viral infection is regulated independently of the virus-specific T cell receptor. Immunological Investigations 42(3), 204220. https://doi.org/10.3109/08820139.2012.751397CrossRefGoogle ScholarPubMed
Jin, HT, Anderson, AC, Tan, WG, West, EE, Ha, SJ, Araki, K, Freeman, GJ, Kuchroo, VK and Ahmed, R (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proceedings of the National Academy of Sciences USA 107(33), 1473314738. https://doi.org/10.1073/pnas.1009731107CrossRefGoogle ScholarPubMed
Jones, RB, Ndhlovu, LC, Barbour, JD, Sheth, PM, Jha, AR, Long, BR, Wong, JC, Satkunarajah, M, Schweneker, M, Chapman, JM, Gyenes, G, Vali, B, Hyrcza, MD, Yue, FY, Kovacs, C, Sassi, A, Loutfy, M, Halpenny, R, Persad, D, Spotts, G, Hecht, FM, Chun, T, McCune, JM, Kaul, R, Rini, JM, Nixon, DF and Ostrowski, MA (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. The Journal of Experimental Medicine 205(12), 27632779. https://doi.org/10.1084/jem.20081398CrossRefGoogle ScholarPubMed
Karp, CL, El-Safi, SH, Wynn, TA, Satti, MM, Kordofani, AM, Hashim, FA, Hag-Ali, M, Neva, FA, Nutman, TB and Sacks, DL (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. The Journal of Clinical Investigation 91(4), 16441648. https://doi.org/10.1172/JCI116372CrossRefGoogle ScholarPubMed
Kaufmann, DE, Kavanagh, DG, Pereyra, F, Zaunders, JJ, Mackey, EW, Miura, T, Palmer, S, Brockman, M, Rathod, A, Piechocka-Trocha, A, Baker, B, Zhu, B, Le Gall, S, Waring, MT, Ahern, R, Moss, K, Kelleher, AD, Coffin, JM, Freeman, GJ, Rosenberg, ES and Walker, BD (2007) Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 8(11), 12461254. https://doi.org/10.1038/ni1515CrossRefGoogle ScholarPubMed
Li, W, Dong, H, Huang, Y, Chen, T, Kong, X, Sun, H, Yu, X and Xu, J (2016a) Clonorchis sinensis co-infection could affect the disease state and treatment response of HBV patients. PLOS Neglected Tropical Diseases 10(6), e4806. https://doi.org/10.1371/journal.pntd.0004806CrossRefGoogle ScholarPubMed
Liang, C, Hu, XC, Lv, ZY, Wu, ZD, Yu, XB, Xu, J and Zheng, HQ (2009) [Experimental establishment of life cycle of Clonorchis sinensis]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 27(2), 148150. http://doi.org/CNKI:SUN:ZJSB.0.2009-02-019Google ScholarPubMed
Liu, Y, Gao, LF, Liang, XH and Ma, CH (2016) Role of Tim-3 in hepatitis B virus infection: An overview. World Journal of Gastroenterology 22(7), 22942303. https://doi.org/10.3748/wjg.v22.i7.2294CrossRefGoogle ScholarPubMed
Lykken, JM, DiLillo, DJ, Weimer, ET, Roser-Page, S, Heise, MT, Grayson, JM, Weitzmann, MN and Tedder, TF (2014) Acute and chronic B cell depletion disrupts CD4+ and CD8+ T cell homeostasis and expansion during acute viral infection in mice. Journal of Immunology (Baltimore, Md.: 1950) 193(2), 746756. https://doi.org/10.4049/jimmunol.1302848CrossRefGoogle ScholarPubMed
Meng, Z, Chen, Y and Lu, M (2019) Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Frontiers in Immunology 10, 3127. https://doi.org/10.3389/fimmu.2019.03127CrossRefGoogle ScholarPubMed
Na, BK, Pak, JH and Hong, SJ (2020) Clonorchis sinensis and clonorchiasis. Acta Tropica 203, 105309. https://doi.org/10.1016/j.actatropica.2019.105309CrossRefGoogle ScholarPubMed
Nakamoto, N, Cho, H, Shaked, A, Olthoff, K, Valiga, ME, Kaminski, M, Gostick, E, Price, DA, Freeman, GJ, Wherry, EJ and Chang, KM (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathogens 5(2), e1000313. https://doi.org/10.1371/journal.ppat.1000313CrossRefGoogle ScholarPubMed
Nebbia, G, Peppa, D, Schurich, A, Khanna, P, Singh, HD, Cheng, Y, Rosenberg, W, Dusheiko, G, Gilson, R, ChinAleong, J, Kennedy, P and Maini, MK (2012) Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PloS One 7(10), e47648. https://doi.org/10.1371/journal.pone.0047648CrossRefGoogle ScholarPubMed
Nguyen, LT and Ohashi, PS (2015) Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nature Reviews Immunology 15(1), 4556. https://doi.org/10.1038/nri3790CrossRefGoogle ScholarPubMed
Pipkin, ME, Sacks, JA, Cruz-Guilloty, F, Lichtenheld, MG, Bevan, MJ and Rao, A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32(1), 7990. https://doi.org/10.1016/j.immuni.2009.11.012CrossRefGoogle ScholarPubMed
Qian, MB, Chen, YD, Liang, S, Yang, GJ and Zhou, XN (2012) The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infectious Diseases of Poverty 1(1), 4. https://doi.org/10.1186/2049-9957-1-4CrossRefGoogle ScholarPubMed
Saeidi, A, Zandi, K, Cheok, YY, Saeidi, H, Wong, WF, Lee, C, Cheong, HC, Yong, YK, Larsson, M and Shankar, EM (2018) T-cell exhaustion in chronic infections: reversing the state of exhaustion and reinvigorating optimal protective immune responses. Frontiers in Immunology 9, 2569. https://doi.org/10.3389/fimmu.2018.02569CrossRefGoogle ScholarPubMed
Schietinger, A and Greenberg, PD (2014) Tolerance and exhaustion: Defining mechanisms of T cell dysfunction. Trends in Immunology 35(2), 5160. https://doi.org/10.1016/j.it.2013.10.001CrossRefGoogle ScholarPubMed
Shaw, DM, Merien, F, Braakhuis, A and Dulson, D (2018) T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 104, 136142. https://doi.org/10.1016/j.cyto.2017.10.001CrossRefGoogle ScholarPubMed
Streeck, H, Brumme, ZL, Anastario, M, Cohen, KW, Jolin, JS, Meier, A, Brumme, CJ, Rosenberg, ES, Alter, G, Allen, TM, Walker, BD and Altfeld, M (2008) Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Medicine 5(5), e100. https://doi.org/10.1371/journal.pmed.0050100CrossRefGoogle ScholarPubMed
Tang, ZL, Huang, Y and Yu, XB (2016) Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 5(1), 71. https://doi.org/10.1186/s40249-016-0166-1CrossRefGoogle ScholarPubMed
Trautmann, T, Kozik, JH, Carambia, A, Richter, K, Lischke, T, Schwinge, D, Mittrücker, HW, Lohse, AW, Oxenius, A, Wiegard, C and Herkel, J (2014) CD4+ T-cell help is required for effective CD8+ T cell-mediated resolution of acute viral hepatitis in mice. PLoS One 9(1), e86348. https://doi.org/10.1371/journal.pone.0086348CrossRefGoogle ScholarPubMed
Trépo, C, Chan, HL and Lok, A (2014) Hepatitis B virus infection. The Lancet 384(9959), 20532063. https://doi.org/10.1016/S0140-6736(14)60220-8CrossRefGoogle ScholarPubMed
Velu, V, Titanji, K, Zhu, B, Husain, S, Pladevega, A, Lai, L, Vanderford, TH, Chennareddi, L, Silvestri, G, Freeman, GJ, Ahmed, R and Amara, RR (2009) Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458(7235), 206210. https://doi.org/10.1038/nature07662CrossRefGoogle ScholarPubMed
Virgin, HW, Wherry, EJ and Ahmed, R (2009) Redefining chronic viral infection. Cell 138(1), 3050. https://doi.org/10.1016/j.cell.2009.06.036CrossRefGoogle ScholarPubMed
Wang, D, Young, ND, Korhonen, PK and Gasser, RB (2018) Clonorchis sinensis and Clonorchiasis: The relevance of exploring genetic variation. Adv Parasitol 100, 155208. https://doi.org/10.1016/bs.apar.2018.03.006CrossRefGoogle ScholarPubMed
Wang, X, He, Q, Shen, H, Lu, X and Sun, B (2019a) Genetic and phenotypic difference in CD8(+) T cell exhaustion between chronic hepatitis B infection and hepatocellular carcinoma. Journal of Medical Genetics 56(1), 1821. https://doi.org/10.1136/jmedgenet-2018-105267CrossRefGoogle ScholarPubMed
Wang, Y, Zheng, D, Shi, M and Xu, X (2019b) T cell dysfunction in chronic hepatitis B infection and liver cancer: Evidence from transcriptome analysis. Journal of Medical Genetics 56(1), 22. https://doi.org/10.1136/jmedgenet-2018-105570CrossRefGoogle ScholarPubMed
Wherry, EJ (2011) T cell exhaustion. Nature Immunology 12(6), 492499. https://doi.org/10.1038/ni.2035CrossRefGoogle ScholarPubMed
Wherry, EJ, Blattman, JN, Murali-Krishna, K, van der Most, R and Ahmed, R (2003a) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. Journal of Virology 77(8), 49114927. https://doi.org/10.1128/jvi.77.8.4911-4927.2003CrossRefGoogle ScholarPubMed
Wherry, EJ, Blattman, JN and Ahmed, R (2005) Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. Journal of Virology 79(14), 89608968. https://doi.org/10.1128/JVI.79.14.8960-8968.2005CrossRefGoogle ScholarPubMed
Wherry, EJ, Ha, S, Kaech, SM, Haining, WN, Sarkar, S, Kalia, V, Subramaniam, S, Blattman, JN, Barber, DL and Ahmed, R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4), 670684. https://doi.org/10.1016/j.immuni.2007.09.006CrossRefGoogle ScholarPubMed
Wherry, EJ and Ahmed, R (2004) Memory CD8 T-cell differentiation during viral infection. Journal of Virology 78(11), 55355545. https://doi.org/10.1128/JVI.78.11.5535-5545.2004.CrossRefGoogle ScholarPubMed
Wherry, EJ and Kurachi, M (2015) Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology 15(8), 486499. https://doi.org/10.1038/nri3862CrossRefGoogle ScholarPubMed
Wongjitrat, C, Sukwit, S, Chuenchitra, T, Seangjaruk, P, Rojanasang, P, Romputtan, P and Srisurapanon, S (2013) CTLA-4 and its ligands on the surface of T- and B-lymphocyte subsets in chronic hepatitis B virus infection. Journal of the Medical Association of Thailand 96(Suppl 1), S54S59. https://europepmc.org/article/MED/23724456Google ScholarPubMed
Yang, G, Han, M, Chen, F, Xu, Y, Chen, E, Wang, X, Liu, Y, Sun, J, Hou, J, Ning, Q and Wang, Z (2014) Hepatitis B virus genotype B and mutations in basal core promoter and pre-core/core genes associated with acute-on-chronic liver failure: A multicenter cross-sectional study in China. Hepatology International 8(4), 508516. https://doi.org/10.1007/s12072-014-9554-4CrossRefGoogle ScholarPubMed
Ye, B, Liu, X, Li, X, Kong, H, Tian, L and Chen, Y (2015) T-cell exhaustion in chronic hepatitis B infection: Current knowledge and clinical significance. Cell Death & Disease 6(3), e1694. https://doi.org/10.1038/cddis.2015.42CrossRefGoogle ScholarPubMed
Ye, B, Li, X, Dong, Y, Wang, Y, Tian, L, Lin, S, Liu, X, Kong, H and Chen, Y (2017) Increasing LAG-3 expression suppresses T-cell function in chronic hepatitis B: A balance between immunity strength and liver injury extent. Medicine (Baltimore) 96(1), e5275. https://doi.org/10.1097/MD.0000000000005275CrossRefGoogle ScholarPubMed
Yoshio, S, Sugiyama, M, Shoji, H, Mano, Y, Mita, E, Okamoto, T, Matsuura, Y, Okuno, A, Takikawa, O, Mizokami, M and Kanto, T (2016) Indoleamine-2,3-dioxygenase as an effector and an indicator of protective immune responses in patients with acute hepatitis B. Hepatology 63(1), 8394. https://doi.org/10.1002/hep.28282CrossRefGoogle Scholar
Young, ND, Campbell, BE, Hall, RS, Jex, AR, Cantacessi, C, Laha, T, Sohn, WM, Sripa, B, Loukas, A, Brindley, PJ and Gasser, RB (2010) Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Neglected Tropical Diseases 4(6), e719. https://doi.org/10.1371/journal.pntd.0000719CrossRefGoogle ScholarPubMed
Zajac, AJ, Blattman, JN, Murali-Krishna, K, Sourdive, DJ, Suresh, M, Altman, JD and Ahmed, R (1998) Viral immune evasion due to persistence of activated T cells without effector function. Journal of Experimental Medicine 188(12), 22052213. https://doi.org/10.1084/JEM.188.12.2205CrossRefGoogle ScholarPubMed