Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T21:40:40.044Z Has data issue: false hasContentIssue false

Nonlinear distortion of the Kelvin ship-wave pattern

Published online by Cambridge University Press:  29 March 2006

N. Hogben
Affiliation:
Ship Division, National Physical Laboratory

Abstract

Linear wave theory is extensively used in research on the design of ship hull forms. Difficulty is being encountered, however, because of substantial differences between the calculated and measured phase geometry of the wave patterns generated. It seems likely that these differences may be at least partly due to nonlinear effects on phase velocity, and a nonlinear analysis of the Kelvin pattern has been undertaken as a basis for estimating the possible magnitude of such effects. It is noted that the Kelvin pattern due to a source in a finite tank contains a set of discrete free wave modes. An analysis of the nonlinear interactions in the general case of a steady multidirectional pattern of discrete cosine wave modes is undertaken, special attention being paid to the distortion of the phase anatomy, and the resulting theory is applied to the case of the Kelvin pattern in a tank. Sample computations using this analysis are discussed.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, T. P. 1968 J. Geophys. Res. 73, 513.
Eggers, K. W. H. 1962 Schiffstechnik, 9, 79.
Eggers, K. W. H. 1963 Proc. International Seminar on Theoretical Wave Resistance. Ann Arbor.
Eggers, K. W. H. 1966 Proc. 6th ONR Symposium on Naval Hydrodynamics. Washington.
Everest, J. T. & Hogben, N. 1969 Trans. Roy. Instn. Nav. Archit. 111, 343.
Everest, J. T. & Hogben, N. 1970 Trans. Roy. Instn. Nav. Archit. 112, 319.
Gadd, G. E. 1969 Trans. Roy. Instn. Nav. Archit. 111, 487.
Gadd, G. E. 1971 Nat. Phys. Lab. Ship Rep. no. 156.
Hasselmann, K. 1961 Proc. Conference on Ocean Wave Spectra. Easton, Maryland.
Havelock, T. H. 1908 Proc. Roy. Soc. A 81, 398.
Havelock, T. H. 1934 Trans. Roy. Instn. Nav. Archit. 76, 430.
Hogben, N. 1957 Trans. Roy. Instn. Nav. Archit. 99, 446.
Hogben, N. 1971a Trans. Roy. Instn. Nav. Archit. 113, 345.
Hogben, N. 1971b Nat. Phys. Lab. Ship Rep. no. 159.
Hogben, N. 1972 Nat. Phys. Lab. Ship Rep. no. 167.
Hovgaard, G. W. 1909 Trans. Roy. Instn. Nav. Archit. 51, 251.
Howe, M. S. 1967 J. Fluid Mech. 30, 497.
Howe, M. S. 1968 J. Fluid Mech. 32, 779.
Inui, T. 1963 Trans. Soc. Naval Arch. Mar. Engrs, 71, 283.
Kelvin, Lord 1887 Proc. Instn. Mech. Engrs, 38, 409.
Kelvin, Lord 1904 Proc. Roy. Soc. Edin. 25, 311.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Longuet-Higgins, M. S. 1962 J. Fluid Mech. 12, 321.
Lunde, J. K. 1951 Trans. Soc. Naval Arch. Mar. Engrs, 59, 25.
Newman, J. N. 1970 Proc. 8th ONR Symposium on Naval Hydrodynamics. Pasadena.
Newman, J. N. 1971 J. Ship. Res. 15, 1.
Newman, J. N. & Poole, F. A. P. 1962 Schiffstechnik, 9, 21.
Phillips, O. M. 1960 J. Fluid Mech. 9, 193.
Rayleigh, Lord 1876 Phil. Mag. 5, 257.
Shearer, J. R. 1951 Trans. N.E. Coast Instn. Engrs Shipb. 67, 43.
Sisov, V. G. 1961 Izv. Akad. Nauk SSSR Otd Tech. Mech. i Maschinostrojenie, p. 75.
Srettensky, L. M. 1936 Phil. Mag. 22, 1005.
Stokes, G. G. 1849 Camb. Trans. 8, 441.
Ursell, F. 1960 J. Fluid Mech. 8, 418.