Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T16:10:49.670Z Has data issue: false hasContentIssue false

The long range persistence of wakes behind a row of roughness elements

Published online by Cambridge University Press:  11 February 2010

M. E. GOLDSTEIN*
Affiliation:
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135, USA
ADRIAN SESCU
Affiliation:
University of Toledo, Department of Mechanical Industrial & Manufacturing Engineering, Toledo, OH 43606, USA
PETER W. DUCK
Affiliation:
University of Manchester, School of Mathematics, Manchester M13 9PL, UK
MEELAN CHOUDHARI
Affiliation:
National Aeronautics and Space Administration, Langley Research Center, Hampton, VA 23681, USA
*
Email address for correspondence: Marvin.E.Goldstein@nasa.gov

Abstract

We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. National Bureau of Standards.Google Scholar
Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. J. Fluid Mech. 175, 142.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Berry, S. A., Auslender, A. H., Dilley, A. D. & Calleja, J. F. 2001 Hypersonic boundary-layer trip development for hyper-X. J. Spacecr. Rockets 38 (6), 853864.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Carrier, G. F., Krook, M. & Pearson, C. E. 1966 Functions of a Complex Variable. McGraw-Hill.Google Scholar
Case, K. M. 1960 Stability of plane couette flow. Phys. Fluids 3, 143148.CrossRefGoogle Scholar
Choudhari, M. & Duck, P. W. 1996 Nonlinear excitation of inviscid stationary vortex instabilities in boundary layer flow in IUTAM symposium on nonlinear instability and transition in three-dimensional boundary layers. In Proceedings of the IUTAM Symposium, Manchester, UK, 1720 July 1995 (ed. Duck, P. W. & Hall, P.). Kluwer Academic Publishers.Google Scholar
Choudhari, M. & Fischer, P. 2005 Roughness induced transient growth. Presented at the Thirty-fifth AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2005-4765.CrossRefGoogle Scholar
Choudhari, M., Li, F. & Edwards, J. A. 2009 Stability analysis of roughness array wake in a high-speed boundary layer. AIAA Paper 2009-0170.CrossRefGoogle Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14, L57–L60.CrossRefGoogle Scholar
Denier, J. P., Hall, P. & Seddougui, S. O. 1991 On the receptivity problem for Görtler vortices': vortex motions induced by wall roughness. Phil. Trans. R. Soc. Lond. A 335, 5185.Google Scholar
Ellingson, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18, 487488.CrossRefGoogle Scholar
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flows. Phys. Fluids 31, 20932102.CrossRefGoogle Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the non-modal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16, 10, 36273638.CrossRefGoogle Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17, 054110–15.CrossRefGoogle Scholar
Gaster, M., Grosch, C. E. & Jackson, T. L. 1994 The velocity field created by a shallow bump in a boundary layer. Phys. Fluids 6 (9), 30793085.CrossRefGoogle Scholar
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.CrossRefGoogle Scholar
Goldstein, M. E. & Hultgren, L. 1989 Boundary-layer receptivity to long-wave free-stream disturbances. Annu. Rev. Fluid Mech. 21, 137166.CrossRefGoogle Scholar
Goldstein, M. E. & Sescu, A. 2008 Boundary-layer transition at high free-stream disturbance levels – beyond Klebanoff modes. J. Fluid Mech. 613, 95124.CrossRefGoogle Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
Kemp, N. H. 1951 The laminar three-dimensional boundary layer and the study of the flow past a side edge. MAes Thesis, Cornell University, Ithaca, NY.Google Scholar
Kendall, J. M. 1982 Laminar boundary layer distortion by surface roughness: effect upon stability. Part II. Air Force Wright Aeronautic Labratories Report, AFWAL-TR-82–3002.Google Scholar
Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak free-stream turbulence. AIAA Paper 85-1695.CrossRefGoogle Scholar
Klebanoff, P., Cleveland, W. G. & Tidstrom, K. D. 1992 On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element. J. Fluid Mech. 237, 101187.CrossRefGoogle Scholar
Landahl, M. T. 1980 A Note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Leib, S. J. Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Levin, P. & Henningson, D. S. 2003 Exponential vs. algebraic growth and transition prediction in boundary layer flow. Flow Turbul. Combust. 70, 183210.CrossRefGoogle Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
Reshotko, E. 2001 Transient growth - a factor in bypass transition. Phys. Fluids 13 (5), 10671075.CrossRefGoogle Scholar
Reshotko, E. & Tumin, A. 2002 Investigation of the role of transient growth in roughness-induced transition. AIAA Paper 2002-2850.CrossRefGoogle Scholar
Rothmayer, A. P. & Smith, F. T. 1998 Incompressible Triple Deck Theory, The Handbook of Fluid Dynamics. CRC Press.Google Scholar
Smith, F. T. 1973 Laminar flow over a small hump on a flat plate. J. Fluid Mech. 57, 803824.CrossRefGoogle Scholar
Smith, F. T. 1976 a Flow through constricted pipes and channels. Part 1. Quart. J. Mech. Appl. Math. 29, 343364.CrossRefGoogle Scholar
Smith, F. T. 1976 b Flow through constricted pipes and channels. Part 2. Quart. J. Mech. Appl. Math. 29, 365376.CrossRefGoogle Scholar
Smith, F. T. 1991 Steady and unsteady three-dimensional interactive boundary layers. Comput. Fluids 20 (3), 243268.CrossRefGoogle Scholar
Smith, F. T., Brighton, P. S., Jackson, P. S. & Hunt, J. C. R. 1981 On boundary layer flow over two-dimensional obstacles. J. Fluid Mech. 113, 123152.CrossRefGoogle Scholar
Tani, I., Komoda, H., Komatsu, Y. & Iuchi, M. 1962 Boundary-layer transition by isolated roughness. Report 375. Aeronautical Research Institute, University of Tokyo.Google Scholar
Tannehill, J. C., Anderson, D. A. & Pletcher, R. H. 1997 Computational Fluid Mechanics and Heat Transfer. Taylor & Francis.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic Stability without Eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Tumin, A. & Reshotko, E. 2001 Spatial theory of optimal disturbances in boundary layers. Phys. Fluids 13 (7), 20972104.CrossRefGoogle Scholar
Tumin, A. & Reshotko, E. 2005 Receptivity of a boundary-layer flow to a three-dimensional hump at finite Reynolds numbers. Phys. Fluids 17 (9), 094101-094101-8.CrossRefGoogle Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free-stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
White, E. B. & Ergin, F. G. 2003 Receptivity and transient growth of roughness-induced disturbances. AIAA Paper 2003-4243.CrossRefGoogle Scholar