Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T08:25:30.877Z Has data issue: false hasContentIssue false

A new Cambrian sphinctozoan sponge from North America, its relationship to archaeocyaths and the nature of early sphinctozoans

Published online by Cambridge University Press:  01 May 2009

Françoise Debrenne
Affiliation:
CNRS URA 12, Institut de Paléontologie, 8 Rue de Buffon, Paris 75005, France
Rachel Wood
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing St., Cambridge CB2 3EQ, U.K.

Abstract

A new early Cambrian sponge of sphinctozoan organization named Polythalamia americana nov. gen. et sp. is described from Nevada and Alaska, U.S.A. P. americana nov. gen. et sp. shows little resemblance to other Cambrian reported sphinctozoans, but is similar to late Palaeozoic to early Mesozoic forms from Europe and Asia, e.g. Stylothalamia and Amblysiphonella. The polyphyletic origin of sphinctozoans based upon spicule criteria from younger examples is therefore corroborated by the varied morphology and clearly widespread palaeogeographic distribution of Cambrian forms, which were hitherto recognized only from Australia. P. americana nov. gen. et sp. possesses a relatively small, globular multi-chambered calcareous skeleton, with thin but densely perforate walls and a central retrosiphonate, perforate spongocoel. The skeleton is composed of an irregular microstructure of unknown, but probable calcitic, original mineralogy. There are no spicules or primary internal structures, but secondary vesicular filling tissue is present. The pore organization, however, it directly comparable to archaeocyaths, e.g. coscinocyathines, and this character is taken to be the only synapomorphy available for taxonomic and phylogenetic purposes. Indeed, P. americana nov. gen. et sp. is closely associated with a diverse archaeocyath assemblage and draws attention to morphological similarities between some archaeocyaths and sphinctozoans, thus questioning the criteria at present used to distinguish between these groups. Accordingly, a list of nomenclatural synonymies is given to aid comparison. Coscinocyathine archaeocyaths possess chambered juvenile stages and P. americana nov. gen. et sp. is suggested to represent an aspiculate lineage of sphinctozoan grade which may be derived from forms such as Clathricoscinus by neoteny. It appears that at least three clades of sphinctozoan-grade calcified sponges were present by end of early Cambrian time and their occurrence in association with island arcs of the palaeopacific rim is confirmed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beljaeva, G. B. & Nikitini, N. P. 1984. Spinctozoa Dal'nego Vostoka. [Sphinctozoans of the Far East.] Daklady Akademii Nauk SSSR 276, 711–13 (in Russian).Google Scholar
Bengtson, S. 1986. Siliceous microfossils from the Upper Cambrian of Queensland. Alcheringa 10, 195216.CrossRefGoogle Scholar
Debrenne, F. 1983. Archaeocyathids: Morphology and affinity. In Sponges and Spongiomorphs. Notes for a Short Course (eds. Rigby, J. K. and Steam, C. W.), pp. 178–90. University of Tennessee, Department of Geological Sciences, Studies of Geology 7.Google Scholar
Debrenne, F. & Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organisation? Palaeontographica Americana 54, 358569.Google Scholar
Debrenne, F., Rozanov, A. Yu. & Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine 121, 291–99.CrossRefGoogle Scholar
Debrenne, F., Zhuravlev, A. Yu. & Rozanov, A. Yu. 1989. Pravilnye Archeosiaty. [Regular archaeocyaths.] Trudy Paleontologicheskogo Instituta 233, 1198. Moskow, Nauka 1989 (in Russian).Google Scholar
Debrenne, F., Gandin, A. & Gangloff, R. A. in Press. Analyse sédimentologique et paléontologique de calcaires organogénes du Cambrien Inférieur de Battle Mountain (Nevada, U.S.A.). Annales de Paléontologie, Masson et Cie, Paris.Google Scholar
de Freitas, T. 1987. A Silurian sphinctozoan sponge from east-central Cornwallis Island, Canadian Arctic. Canadian Journal of Earth Sciences 24, 840–4.CrossRefGoogle Scholar
Finks, R. M. 1983. Pharetronida: Inozoa and Sphinctozoa. In Sponges and Spongiomorphs. Notes for a Short Course (eds Rigby, J. K. and Stern, C. W.), pp. 5969. University of Tennessee, Department of Geological Sciences, Studies in Geology 7.Google Scholar
Glaessner, M. F. 1978. The oldest foraminifera. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics of Australia 192, 61–4.Google Scholar
Kobluk, D. R. & James, N. P. 1979. Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia 12, 193218.CrossRefGoogle Scholar
Kruse, P. 1987. Further Australian Cambrian sphinctozoans. Geological Magazine 124, 543–53.CrossRefGoogle Scholar
McCollum, L. B., McCollum, M. B. & Repetski, J. E., 1987. The Scott Canyon Formation, Battlemountain, Nevada: A structural amalgamation of the Ordovician Valmy Formation and Devonian Slaven Chert. Geological Society of America, Abstracts with Programs 19 (7), 764.Google Scholar
Palmer, A. R. 1971. The Cambrian of the Great Basin and adjoiningareas, western United States. In Cambrian of the New World (ed. Holland, C. H.), pp. 178. New York: Wiley.Google Scholar
Pickett, J. & Jell, P. A. 1983. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoirs of the Association of Australian Palaeontologists 1, 8592.Google Scholar
Pickett, J. & Rigby, J. K. 1983. Sponges from the Early Devonian Garra Formation, New South Wales. Journal of Paleontology 57, 720–41.Google Scholar
Reitner, J. 1990 (in press). The polyphyletic nature of the ‘Sphinctozoa”. In Proceedings of the Third International Conference on the Biology of Sponges (ed. Ruetzler, K.). Paleontographica Americana.Google Scholar
Rigby, J. K. & Blodgett, R. B. 1983. Early Middle Devonian sponges from the McGrath Quadrangle of west-central Alaska. Journal of Paleontology 57, 773–86.Google Scholar
Rigby, J. K. & Potter, A. W. 1986. Ordovician sphinctozoan sponges from the eastern Klamath Mountains, northern California. Paleontological Society Memoir, no. 20. (Journal of Paleontology 60 (4), Supplement), 147.Google Scholar
Rigby, J. K., Potter, A. W. & Blodgett, R. B. 1988. Ordovician sphinctozoan sponges of Alaska and Yukon Territories. Journal of Paleontology 62, 731–48.Google Scholar
Roberts, R. J. 1964. Descriptions and regional relations of geologic units in a complex mining district: Stratigraphy and Structure of the Antler Peak Quadrangle Humboldt and Lander Counties, Nevada. Geology of the Antler Peak Quadrangle, Nevada. US Geological Survey Professional Paper 459-A, 1417.Google Scholar
Seilacher, A. 1962. Die Sphinctozoa, eine Gruppe fossiler Kalkschwamme. Akademie der Wissenschaften und der Literatur zu Mainz, Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen 1961 (10), 721–90, pls. 19.Google Scholar
Stewart, J. H. & Suczek, C. A. 1977. Cambrian and latest Precambrian paleogeography and tectonics in the western United States. In Paleozoic Paleogeography of the western United States (eds Stewart, J. H., Stevens, C. H. and Fritsche, A. E.), p. 117. Pacific Section, Society of Economic Paleontologists and Mineralogists, Pacific Coast Paleogeographic Symposium 1.Google Scholar
Vacelet, J. 1985. Coralline sponges and the evolution of the Porifera. Systematics Association Special Publication 28, 113.Google Scholar
Vologdin, A. G. 1957. Arkheotsiaty i ikh stratigraficheskoe znachenie. [Archaeocyaths and their stratigraphic significance.] Acta Paleontologica Sinica 5, 173222 (in Russian).Google Scholar
Vologdin, A. G. 1962. Kanatomii arkheotsiat. [On the anatomy of the archaeocyaths.] Paleontologicheskiy Zhurnal 2, 9–20, pls. 12 (in Russian).Google Scholar
Voronova, L. G., Drozdova, N. A., Esakova, N. V., Zhegallo, E. A., Zhuravlev, A. Yu., Rozanov, A. Yu., Sayutina, T. A. & Ushatinskaya, G. T. 1987. Iskopaemie nizhnego kembriya gor Makkenzi (Kanada). [Lower Cambrian fossils of the Mackenzie Mountains, (Canada).] Trudy Paleontologicheskogo Instituta 224, 188, 32 pl. (in Russian).Google Scholar
Webby, B. D. & Rigby, J. K. 1985. Ordovician sphinctozoan sponges from central New South Wales. Alcheringa 9, 209–20.CrossRefGoogle Scholar
White, R. D. 1986. Cambrian Radiolaria from Utah. Palaeontology 60, 778–80.CrossRefGoogle Scholar
Wood, R. 1987. Biology and revised systematics of some later Mesozoic stromatoporoids. Special Papers in Palaeontology 37, 189.Google Scholar
Wood, R. 1990. in press. Non-spicular biomineralization in demosponges. Berliner Geowissenschaft Abhandlungen.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 1985. Sovremennye arkheotsiaty? [Recent archaeocyaths?] In Problematiki pozdnego dokembriya i paleozoya (eds Sokolov, B. S. and Zhuravleva, I. T.), pp. 2434. Trudy Instituta Geologii i Geofiziki, Sibirskoe Otdelenie 632 (in Russian).Google Scholar
Zhuravleva, I. T. & Myagkova, E. I. 1974. Sravnitel'naya kharakteristika Archeaeta i Stromatoporoiodea. [Comparative characteristics of Archaeata and Stromatoporoidea.] In Drevnie Cnidaria. Tom 1 [Ancient Cnidaria. Vol. 1] (ed. Sokolov, B. S.), pp. 6370, 2 pls. Nauka, Novosibirsk (in Russian).Google Scholar