Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:37:45.415Z Has data issue: false hasContentIssue false

A DYNAMICAL SYSTEM PROOF OF NIVEN’S THEOREM AND ITS EXTENSIONS

Published online by Cambridge University Press:  21 June 2023

CHATCHAWAN PANRAKSA
Affiliation:
Applied Mathematics Program, Mahidol University International College, Nakhon Pathom 73170, Thailand e-mail: chatchawan.pan@mahidol.edu
DETCHAT SAMART*
Affiliation:
Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
SONGPON SRIWONGSA
Affiliation:
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand e-mail: songpon.sri@kmutt.ac.th

Abstract

Niven’s theorem asserts that $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap \mathbb {Q}=\{0,\pm 1,\pm 1/2\}.$ In this paper, we use elementary techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap K$, where K is an arbitrary number field.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author is supported by National Research Council of Thailand (NRCT) under the Research Grant for Mid-Career Scholar no. N41A640153. The third author acknowledges funding by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and King Mongkut’s University of Technology Thonburi (Grant No. RGNS 64-096).

References

Bach, E. and Shallit, J., Algorithmic Number Theory, Volume 1: Efficient Algorithms, Foundations of Computing Series (MIT Press, Cambridge, MA, 1996).Google Scholar
Billal, M. and Riasat, S., Integer Sequences: Divisibility, Lucas and Lehmer Sequences (Springer, Singapore, 2021).CrossRefGoogle Scholar
Bousch, T., Sur quelques problèmes de dynamique holomorphe, PhD Thesis, Paris 11, 1992.Google Scholar
Canci, J. K. and Paladino, L., ‘Preperiodic points for rational functions defined over a global field in terms of good reduction’, Proc. Amer. Math. Soc. 144(12) (2016), 51415158.CrossRefGoogle Scholar
Flynn, E. V., Poonen, B. and Schaefer, E. F., ‘Cycles of quadratic polynomials and rational points on a genus-2 curve’, Duke Math. J. 90(3) (1997), 435463.CrossRefGoogle Scholar
Ih, S.-I. and Tucker, T. J., ‘A finiteness property for preperiodic points of Chebyshev polynomials’, Int. J. Number Theory 6(5) (2010), 10111025.CrossRefGoogle Scholar
Jahnel, J., ‘When is the (co)sine of a rational angle equal to a rational number?’, Preprint, 2010, arXiv:1006.2938.Google Scholar
Lehmer, D. H., ‘Questions, discussions, and notes: a note on trigonometric algebraic numbers’, Amer. Math. Monthly 40(3) (1933), 165166.CrossRefGoogle Scholar
Morton, P., ‘On certain algebraic curves related to polynomial maps’, Compos. Math. 103(3) (1996), 319350.Google Scholar
Morton, P., ‘Arithmetic properties of periodic points of quadratic maps. II’, Acta Arith. 87(2) (1998), 89102.CrossRefGoogle Scholar
Morton, P. and Silverman, J. H., ‘Rational periodic points of rational functions’, Int. Math. Res. Not. IMRN 1994(2) (1994), 97110.CrossRefGoogle Scholar
Niven, I., Irrational Numbers, The Carus Mathematical Monographs, 11 (Mathematical Association of America; distributed by John Wiley, New York, 1956).CrossRefGoogle Scholar
Northcott, D. G., ‘Periodic points on an algebraic variety’, Ann. of Math. (2) 51 (1950), 167177.CrossRefGoogle Scholar
Paolillo, B. and Vincenzi, G., ‘An elementary proof of Niven’s theorem via the tangent function’, Internat. J. Math. Ed. Sci. Tech. 52(6) (2021), 959964.CrossRefGoogle Scholar
Paolillo, B. and Vincenzi, G., ‘On the rational values of trigonometric functions of angles that are rational in degrees’, Math. Mag. 94(2) (2021), 132134.CrossRefGoogle Scholar
Poonen, B., ‘The classification of rational preperiodic points of quadratic polynomials over Q: a refined conjecture’, Math. Z. 228(1) (1998), 1129.CrossRefGoogle Scholar
Samart, D., ‘On an extension of Niven’s theorem’, Internat. J. Math. Ed. Sci. Tech., to appear. Published online (1 August 2022).Google Scholar
Silverman, J. H., The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, 241 (Springer, New York, 2007).CrossRefGoogle Scholar
Stoll, M., ‘Rational 6-cycles under iteration of quadratic polynomials’, LMS J. Comput. Math. 11 (2008), 367380.CrossRefGoogle Scholar
Vivaldi, F. and Hatjispyros, S., ‘Galois theory of periodic orbits of rational maps’, Nonlinearity 5(4) (1992), 961978.CrossRefGoogle Scholar
Walde, R. and Russo, P., ‘Rational periodic points of the quadratic function ${Q}_c(x)={x}^2+c$ ’, Amer. Math. Monthly 101(4), 318331.Google Scholar
Zhang, R., ‘The ${abcd}$ conjecture, uniform boundedness, and dynamical systems’, Preprint, 2022, arXiv:2206.09725.Google Scholar