Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T18:55:28.223Z Has data issue: false hasContentIssue false

12 - SAT Solvers

from Part 5 - Heuristics

Published online by Cambridge University Press:  05 February 2014

Joao Marques-Silva
Affiliation:
University College Dublin
Ines Lynce
Affiliation:
Technical University of Lisbon
Lucas Bordeaux
Affiliation:
Microsoft Research
Youssef Hamadi
Affiliation:
Microsoft Research
Pushmeet Kohli
Affiliation:
Microsoft Research
Get access

Summary

Boolean Satisfiability (SAT) can be considered a success story of Computer Science. Since the mid-90s, SAT has evolved from a decision problem with theoretical interest, to a problem with key practical benefits, finding a wide range of practical applications. From the early 60s until the mid 90s, existing SAT solvers were able to solve small instances with few tens of variables and hundreds of clauses. In contrast, modern SAT solvers are able to solve practical instances with hundreds of thousands of variables and millions of clauses. This chapter describes the techniques that are implemented in SAT solvers aiming to explain why SAT solvers work (so well) in practice. These techniques range from efficient search techniques to dedicated data structures, among others. Whereas some techniques are commonly implemented in modern SAT solvers, some others are more speciic in the sense that only some instances beneit from its implementation. Furthermore, a tentative glimpse of the future is presented.

Introduction

Boolean Satisfiability (SAT) is an NP-complete decision problem [14]. SAT was the first problem to be shown NP-complete. There are no known polynomial time algorithms for SAT. Moreover, it is believed that any algorithm that solves SAT is exponential in the number of variables, in the worst-case.

Although SAT is in theory an NP-complete problem, in practice it can be seen as a success story of Computer Science. There have been remarkable improvements since the mid 90s, namely clause learning and unique implication points (UIPs) [43], search restarts [15, 26], lazy data structures [48], adaptive branching heuristics [48], clause minimization [59] and preprocessing [18].

Type
Chapter
Information
Tractability
Practical Approaches to Hard Problems
, pp. 331 - 349
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×