Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T03:25:22.286Z Has data issue: false hasContentIssue false

3 - Fundamentals of color vision I: color processing in the eye

from Part II - Foundations: basics of color science

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. H., and Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In Landy, M. S. and Movshon, J. A. (eds.), Computational Models of Visual Processing (pp. 320). Cambridge, MA: MIT Press.Google Scholar
Ahnelt, P. K., Keri, C., and Kolb, H. (1990). Identification of pedicles of putative blue sensitive cones in human and primate retina. Journal of Comparative Neurology, 293, 3953.CrossRefGoogle Scholar
Ahnelt, P. K., and Kolb, H. (1994). Horizontal cells and cone photoreceptors in primate retina: a Golgi-light microscope study of spectral connectivity. Journal of Comparative Neurology, 343, 387405.CrossRefGoogle ScholarPubMed
Alpern, M., Rushton, W. A. H., and Torii, S. (1970). Signals from cones. Journal of Physiology, 207(2), 463–75.CrossRefGoogle ScholarPubMed
Anderson, S. J., Mullen, K. T., and Hess, R. F. (1991). Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. Journal of Physiology, 442, 4764.CrossRefGoogle ScholarPubMed
Angueyra, J. M., and Rieke, F. (2013). Origin and effect of phototransduction noise in primate cone photoreceptors. Nature Neuroscience, 16(11), 16921700.CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Lamb, T. D., and Pugh, E. N. Jr. (2002). G proteins and phototransduction. Annual Review of Physiology, 64, 153–87.CrossRefGoogle ScholarPubMed
Atick, J. J. (1992). Could information theory provide an ecological theory of sensory processing? Network-Computation in Neural Systems, 3(2), 213–51.CrossRefGoogle Scholar
Atick, J. J., Li, Z. P., and Redlich, A. N. (1992). Understanding retinal color coding from first principles. Neural Computation, 4(4), 559–72.CrossRefGoogle Scholar
Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183–93.CrossRefGoogle ScholarPubMed
Autrusseau, F., Thibos, L., and Shevell, S. K. (2011). Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality. Vision Research, 51(21–2), 2282–94.CrossRefGoogle Scholar
Barlow, H. B. (1961). Possible principles underlying the transformations of sensory messages. In Rosenblith, W. A. (ed.), Sensory Communication (pp. 217–34). Cambridge, MA: MIT Press.Google Scholar
Baylor, D. A., Nunn, B. J., and Schnapf, J. L. (1987). Spectral sensitivity of cones of the monkey Macaca fascicularis. Journal of Physiology, 390, 145–60.CrossRefGoogle ScholarPubMed
Berson, D. M. (2003). Strange vision: ganglion cells as circadian photoreceptors. Trends in Neuroscience, 26(6), 314–20.CrossRefGoogle ScholarPubMed
Berson, D. M. (2014). Intrinsically photosensitive ganglion cells. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 183–96). Cambridge, MA: MIT Press.Google Scholar
Billock, V. A. (1991). The relationship between simple and double opponent cells Vision Research, 31(1), 3342.CrossRefGoogle ScholarPubMed
Bongard, M. M., and Smirnov, M. S. (1954). Determination of the eye spectral sensitivity curves from spectral mixture curves. Doklady Akademiia nauk S.S.S.R., 102, 1111–14.Google Scholar
Boycott, B. B., and Dowling, J. E. (1969). Organisation of the primate retina: light microscopy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 255, 109–84.Google Scholar
Boycott, B. B., Hopkins, J. M., and Sperling, H. G. (1987). Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 229(1257), 345–79.Google ScholarPubMed
Boycott, B. B., and Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience, 3(11), 1069–88.CrossRefGoogle ScholarPubMed
Boynton, R. M. (1979). Human Color Vision. New York: Holt, Rinehart and Winston.Google Scholar
Boynton, R. M., and Kaiser, P. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161, 366–8.CrossRefGoogle ScholarPubMed
Brainard, D. H. (1998). Hyperspectral image data (http://color.psych.upenn.edu/hyperspectral/).Google Scholar
Brainard, D. H., Hofer, H., and Wandell, B. A. (2013). Wavefront optics: MATLAB Toolbox for analyzing wavefront optics data; especially human adaptive optics measurements (https://github.com/isetbio/WavefrontOptics).Google Scholar
Brainard, D. H., Roorda, A., Yamauchi, Y., Calderone, J. B., Metha, A., Neitz, M., Neitz, J., et al. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 607–14.Google ScholarPubMed
Brainard, D. H., and Stockman, A. (2010). Colorimetry. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V., et al. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 10.1110.56). New York: McGraw Hill.Google Scholar
Brainard, D. H., and Stockman, A. (n.d.). Color Vision. Sunderland, MA: Sinauer.Google Scholar
Briggs, F., and Usrey, W. M. (2011). Corticogeniculate feedback and visual processing in the primate. Journal of Physiology, 589(1), 3340.CrossRefGoogle ScholarPubMed
Brindley, G. S. (1955). The colour of light of very long wavelength. Journal of Physiology, 130, 3544.CrossRefGoogle ScholarPubMed
Brindley, G. S. (1970). Physiology of the Retina and the Visual Pathway, 2nd. edn. Baltimore, MD: Williams and Wilkins.Google Scholar
Brown, T. M., Tsujimura, S., Allen, A. E., Wynne, J., Bedford, R., Vickery, G., Vugler, A., et al. (2012). Melanopsin-based brightness discrimination in mice and humans. Current Biology, 22(12), 1134–41.CrossRefGoogle ScholarPubMed
Buchsbaum, G., and Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 220(1218), 89113.Google ScholarPubMed
Buck, S. L. (2014). The interaction of rod and cone signals: pathways and psychophysics. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 485–96). Cambridge, MA: MIT Press.Google Scholar
Burns, M. E., and Baylor, D. A. (2001). Activation, deactivation and adaptation in vertebrate photoreceptor cells. Annual Review of Neuroscience, 24, 779805.CrossRefGoogle ScholarPubMed
Buzas, P., Blessing, E. M., Szmajda, B. A., and Martin, P. R. (2006). Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. Journal of Neuroscience, 26(43), 11148–61.CrossRefGoogle ScholarPubMed
Calkins, D. J., Schein, S. J., Tsukamoto, Y., and Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature, 371(6492), 70–2.CrossRefGoogle ScholarPubMed
Calkins, D. J., Tsukamato, Y., and Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. Journal of Neuroscience, 18(9), 3373–85.CrossRefGoogle ScholarPubMed
Campbell, F. W., and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197(3), 551–6.CrossRefGoogle Scholar
Carpenter, R. H. S. (1977). Movements of the eyes. London: Pion.Google Scholar
Carroll, J., Neitz, J., and Neitz, M. (2002). Estimates of L:M cone ratio from ERG flicker photometry and genetics. Journal of Vision, 2(8), 531–42.CrossRefGoogle ScholarPubMed
Casagrande, V. A. (1994). A third parallel visual pathway to primate area V1. Trends in Neuroscience, 17(7), 305–10.CrossRefGoogle ScholarPubMed
Chakrabarti, A., and Zickler, T. (2011). Statistics of real-world hyperspectral images. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CrossRefGoogle Scholar
Chang, Y., Burns, S. A., and Kreitz, M. R. (1993). Red-green flicker photometry and nonlinearities in the flicker electroretinogram. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1413–22.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Chen, G., and Kronauer, R. E. (1995). Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism. Vision Research, 35(22), 3103–18.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Huang, E. P., Kronauer, R. E., and Eskew, R. T. Jr. (1993). Colour is what the eye sees best. Nature, 361(6410), 348–50.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Kronauer, R. E., and Eskew, R. T. Jr. (1994). Separable red-green and luminance detectors for small flashes. Vision Research, 34(6), 751–62.CrossRefGoogle ScholarPubMed
Charman, N. (2010). Optics of the eye. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V., et al. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 1.11.65). New York: McGraw Hill.Google Scholar
Chen, S., and Li, W. (2012). A color-coding amacrine cell may provide a blue-Off signal in a mammalian retina. Nature Neuroscience, 15(7), 954–6.CrossRefGoogle Scholar
Cicerone, C. M., and Nerger, J. L. (1989). The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vision Research, 29(1), 115–28.CrossRefGoogle ScholarPubMed
CIE (International Commission on Illumination) (2006). Fundamental Chromaticity Diagram with Physiological Axes – Part I. Technical Report 170–1. Vienna: Central Bureau of the Commission Internationale de l’Éclairage.Google Scholar
Conway, B. R., Chatterjee, S., Field, G. D., Horwitz, G. D., Johnson, E. N., Koida, K., and Mancuso, K. (2010). Advances in color science: from retina to behavior. Journal of Neuroscience, 30(45), 14955–63.CrossRefGoogle ScholarPubMed
Cornsweet, T. (1970). Visual Perception. New York: Academic Press.Google Scholar
Curcio, C. A., Allen, K. A., Sloan, K. R., Lerea, C. L., Hurley, J. B., Klock, I. B., and Milam, A. H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology, 312(4), 610–24.Google ScholarPubMed
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292(4), 497523.CrossRefGoogle ScholarPubMed
Dacey, D. M. (2000). Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience, 23, 743–75.CrossRefGoogle ScholarPubMed
Dacey, D. M., Crook, J. D., and Packer, O. S. (2014). Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Visual Neuroscience, 31(Special Issue 02), 139–51.CrossRefGoogle ScholarPubMed
Dacey, D. M., and Lee, B. B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature, 367(6465), 731–5.CrossRefGoogle ScholarPubMed
Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J., and Smith, V. C. (1996). Horizontal cells of the primate retina: cone specificity without spectral opponency. Science, 271(5249), 656–9.CrossRefGoogle ScholarPubMed
Dacey, D. M., Liao, H.-W., Peterson, B. B., Robinson, F. R., Smith, V. C., Pokorny, J., Yau, K.-W., et al. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 433(7027), 749–54.CrossRefGoogle Scholar
Dacey, D. M., and Packer, O. S. (2003). Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology, 13(4), 421–7.CrossRefGoogle ScholarPubMed
de Lange, H. (1958). Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. Journal of the Optical Society of America, 48, 777–84.Google Scholar
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics, 67(5), 369–77.CrossRefGoogle Scholar
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
Derrington, A. M., and Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in the lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–40.CrossRefGoogle ScholarPubMed
DeVries, S. H., Qi, X., Smith, R. A., Makous, W., and Sterling, P. (2002). Electrical coupling between mammalian cones. Current Biology, 12(22), 1900–7.CrossRefGoogle ScholarPubMed
Diller, L., Packer, O. S., Verweij, J., McMahon, M. J., Williams, D. R., and Dacey, D. M. (2004). L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. Journal of Neuroscience, 24(5), 1079–88.CrossRefGoogle Scholar
Do, M. T., and Yau, K. W. (2010). Intrinsically photosensitive retinal ganglion cells. Physiological Reviews, 90(4), 1547–81.CrossRefGoogle ScholarPubMed
Dowling, J. E. (1987). The Retina, an Approachable Part of the Brain. Cambridge, MA: Harvard University Press.Google Scholar
Dresler, A. (1953). The non-additivity of heterochromatic brightness. Transactions of the Illuminating Engineering Society, 18, 141–65.Google Scholar
D’Zmura, M. (1991). Color in visual search. Vision Research, 31(6), 951–66.Google ScholarPubMed
Eskew, R. T. Jr. (2008). Chromatic detection and discrimination. In Albright, T. D. and Masland, R. H. (eds.), The Senses: A Comprehensive Reference, vol. II: Vision (pp. 101–17). San Diego, CA: Academic Press.Google Scholar
Eskew, R. T. Jr. (2009). Higher order color mechanisms: a critical review. Vision Research, 49(22), 26862704.CrossRefGoogle ScholarPubMed
Eskew, R. T. Jr., McLellan, J. S., and Giulianini, F. (1999). Chromatic detection and discrimination. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 345–68). Cambridge University Press.Google Scholar
Eskew, R. T. Jr., Stromeyer, C. F. III, and Kronauer, R. E. (1994). Temporal properties of the red-green chromatic mechanism. Vision Research, 34(23), 3127–37.CrossRefGoogle ScholarPubMed
Estévez, O. (1979). On the Fundamental Database of Normal and Dichromatic Color Vision. Ph.D. thesis, Amsterdam University.Google Scholar
Estévez, O., and Spekreijse, H. (1974). A spectral compensation method for determining the flicker characteristics of the human color mechanisms. Vision Research, 14, 823–30.CrossRefGoogle Scholar
Field, G. D., and Chichilnisky, E. J. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience, 30, 130.CrossRefGoogle ScholarPubMed
Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., Shlens, J., et al. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467(7316), 673–7.CrossRefGoogle ScholarPubMed
Gamlin, P. D. R., McDougal, D. H., Pokorny, J., Smith, V. C., Yau, K. W., and Dacey, D. M. (2007). Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Research, 47(7), 946–54.CrossRefGoogle ScholarPubMed
Garrigan, P., Ratliff, C. P., Klein, J. M., Sterling, P., Brainard, D. H., and Balasubramanian, V. (2010). Design of a trichromatic cone array. PLoS Computational Biology, 6(2), e1000677.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181206.CrossRefGoogle ScholarPubMed
Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discriminations. Psychological Review, 96(2), 267314.CrossRefGoogle ScholarPubMed
Geisler, W. S. (2011). Contributions of ideal observer theory to vision research. Vision Research, 51(7), 771–81.CrossRefGoogle ScholarPubMed
Giulianini, F., and Eskew, R. T. Jr. (1998). Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research, 38, 3913–26.CrossRefGoogle Scholar
Goodchild, A. K., Chan, T. L., and Grünert, U. (1996). Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Visual Neuroscience, 13(5), 833–45.CrossRefGoogle ScholarPubMed
Grassmann, H. (1853). Zur Theorie der Farbenmischung. Annalen der Physik und Chemie, 165, 6984.CrossRefGoogle Scholar
Grünert, U., Martin, P. R., and Wässle, H. (1994). Immunocytochemical analysis of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology, 348(4), 607–27.Google ScholarPubMed
Guth, S. L. (1991). A model for color and light adaptation. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 8(6), 976–93.CrossRefGoogle Scholar
Guth, S. L., Donley, N. V., and Marrocco, R. T. (1969). On luminance additivity and related topics. Vision Research, 9(5), 537–75.CrossRefGoogle ScholarPubMed
Hamer, R. D., Nicholas, S. C., Tranchina, D., Lamb, T. D., and Jarvinen, J. L. P. (2005). Toward a unified model of vertebrate rod phototransduction. Visual Neuroscience, 22(4), 417–36.CrossRefGoogle Scholar
Hansen, T., and Gegenfurtner, K. R. (2013). Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. Journal of Vision, 13(1), 26.21–21.CrossRefGoogle ScholarPubMed
Hansen, T., Pracejus, L., and Gegenfurtner, K. R. (2009). Color perception in the intermediate periphery of the visual field. Journal of Vision, 9(4), 26.21–26.12.CrossRefGoogle ScholarPubMed
Haverkamp, S., Grunert, U., and Wassle, H. (2000). The cone pedicle, a complex synapse in the retina. Neuron, 27(1), 8595.CrossRefGoogle ScholarPubMed
Hecht, E. (1990). Optics, 2nd edn. Reading, MA: Addison-Wesley.Google Scholar
Heckaman, R. L., and Fairchild, M. D. (2009). Jones and Condit redux in high dynamic range and color. Color and Imaging Conference, 2009(1), 814.CrossRefGoogle Scholar
Hendry, S. H. C., and Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience, 23, 127–53.CrossRefGoogle ScholarPubMed
Hering, E. (1878). Zur Lehre vom Lichtsinne. Sechs Mittheilungen an die Kaiserliche Akademie der Wissenschaften in Wien. Wien: Carl Gerold’s Sohn.Google Scholar
Hering, E. (1920). Grundzüge der Lehre vom Lichtsinn. Berlin: Springer.CrossRefGoogle Scholar
Herr, S., Klug, K., Sterling, P., and Schein, S. (2003). Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. Journal of Comparative Neurology, 457, 185201.CrossRefGoogle ScholarPubMed
Hofer, H. J., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Hofer, H. J., and Williams, D. R. (2014). Color vision and the retinal mosaic. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 469–83). Cambridge, MA: MIT Press.Google Scholar
Hood, D. C., and Finkelstein, M. A. (1986). Sensitivity to light. In Boff, K., Kaufman, L., and Thomas, J. (eds.), Handbook of Perception and Human Performance (vol. I, pp. 5–1–5–66). New York: Wiley.Google Scholar
Hopkins, J. M., and Boycott, B. B. (1995). Synapses between cones and diffuse bipolar cells of a primate retina. Journal of Neurocytology, 24(9), 680–94.CrossRefGoogle Scholar
Horiguchi, H., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2013). Human trichromacy revisited. Proceedings of the National Academy of Science of the United States of America, 110(3), E260–9.Google ScholarPubMed
Hornstein, E. P., Verweij, J., and Schnapf, J. L. (2004). Electrical coupling between red and green cones in primate retina. Nature Neuroscience, 7(7), 745–50.CrossRefGoogle ScholarPubMed
Hubel, D. H., and Wiesel, T. N. (1977). Functional architecture of macaque monkey visual-cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198(1130), 158.Google ScholarPubMed
Humanski, R. A., and Wilson, H. R. (1992). Spatial frequency mechanisms with short-wavelength-sensitive cone inputs. Vision Research, 32(3), 549–60.CrossRefGoogle ScholarPubMed
Humanski, R. A., and Wilson, H. R. (1993). Spatial-frequency adaptation: evidence for a multiple-channel model of short-wavelength-sensitive-cone spatial vision. Vision Research, 33(5–6), 665–75.CrossRefGoogle ScholarPubMed
Hurvich, L. M. (1981). Color Vision. Sunderland, MA: Sinauer.Google Scholar
Ingling, C. R. Jr., and Drum, B. A. (1973). Retinal receptive fields: correlations between psychophysics and electrophysiology. Vision Research, 13(6), 1151–63.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1983a). The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Research, 23(12), 14951500.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1983b). The spatio-chromatic signal of the r-g channels. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 433–44). London: Academic Press.Google Scholar
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1985). The spatiotemporal properties of the r-g X-cell channel. Vision Research, 25(1), 33–8.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Tsou, H. B.-P. (1988). Spectral sensitivity for flicker and acuity criteria. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(8), 1374–8.CrossRefGoogle ScholarPubMed
International Electrotechnical Commission (1999). sRGB Standard, International Electrotechnical Commission Standard 61966-2-1.Google Scholar
Jennings, J. A., and Charman, W. N. (1981). Off-axis image quality in the human eye. Vision Research, 21(4), 445–55.CrossRefGoogle ScholarPubMed
Jusuf, P. R., Martin, P. R., and Grünert, U. (2006). Random wiring in the midget pathway of primate retina. Journal of Neuroscience, 26(15), 3908–17.CrossRefGoogle ScholarPubMed
Kelly, D. H. (1961). Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. Journal of the Optical Society of America, 51, 422–9.CrossRefGoogle ScholarPubMed
Kelly, D. H. (1966). Frequency doubling in visual responses. Journal of the Optical Society of America, 56(11), 1628–33.CrossRefGoogle Scholar
Kelly, D. H. (1983). Spatiotemporal variation of chromatic and achromatic contrast thresholds. Journal of the Optical Society of America, 73(6), 742–50.CrossRefGoogle ScholarPubMed
Kelly, D. H., and van Norren, D. (1977). Two-band model of heterochromatic flicker. Journal of the Optical Society of America, 67(8), 1081–91.CrossRefGoogle ScholarPubMed
Kingdom, F. A. A., and Mullen, K. T. (1995). Separating colour and luminance information in the visual system. Spatial Vision, 9(2), 191219.CrossRefGoogle ScholarPubMed
Klug, K., Herr, S., Ngo, T. N., Sterling, P., and Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. Journal of Neuroscience, 23(30), 9881–7.CrossRefGoogle ScholarPubMed
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 258(823), 261–8.Google ScholarPubMed
Kolb, H., and Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial reconstructions. Journal of Comparative Neurology, 303(4), 617–36.Google Scholar
Kolb, H., and Marshak, D. (2003). The midget pathways of the primate retina. Documenta Ophthalmologica, 106(1), 6781.CrossRefGoogle ScholarPubMed
König, A., and Dieterici, C. (1886). Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum. Sitzungsberichte Akademie der Wissenschaften, Berlin, 805–29.Google Scholar
Kouyama, N., and Mashak, D. W. (1992). Bipolar cells specific for blue cones in the macaque retina. Journal of Neuroscience, 12(4), 1233–52.CrossRefGoogle ScholarPubMed
Krantz, D. H. (1975). Color measurement and color theory. I. Representation theorem for Grassmann structures. Journal of Mathematical Psychology, 12, 283303.CrossRefGoogle Scholar
Krauskopf, J., Williams, D. R., and Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22(9), 1123–31.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., Mandler, M. B., and Brown, A. M. (1986). Higher order color mechanisms. Vision Research, 26(1), 2332.CrossRefGoogle ScholarPubMed
Kremers, J., Scholl, H. P. N., Knau, H., Berendschot, T. T. J. M., and Sharpe, L. T. (2000). L/M-cone ratios in human trichromats assessed by psychophysics, electroretinography and retinal densitometry. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 517–26.CrossRefGoogle ScholarPubMed
Lankheet, M. J. M., Lennie, P., and Krauskopf, J. (1998). Distinctive characteristics of subclasses of red-green P-cells in LGN of macaque. Visual Neuroscience, 15(1), 3746.CrossRefGoogle ScholarPubMed
Lee, B. B., Kremers, J., and Yeh, T. (1998). Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience, 15(1), 161–75.CrossRefGoogle ScholarPubMed
Lee, S. C. S., Telkes, I., and Grünert, U. (2005). S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. European Journal of Neuroscience, 22, 437–47.CrossRefGoogle ScholarPubMed
Le Grand, Y. (1972). Spectral luminosity. In Jameson, D. and Hurvich, L. M. (eds.), Visual Psychophysics: Handbook of Sensory Physiology (vol. VII, pp. 413–33). Berlin: Springer-Verlag.Google Scholar
Lennie, P. (1984). Recent developments in the physiology of color vision. Trends in Neuroscience, 7(7), 243–8.CrossRefGoogle Scholar
Lennie, P., and D’Zmura, M. (1988). Mechanisms of color vision. CRC Critical Reviews in Neurobiology, 3(4), 333400.Google ScholarPubMed
Lennie, P., Haake, P. W., and Williams, D. R. (1991). The design of chromatically opponent receptive fields. In Landy, M. S. and Movshon, J. A. (eds.), Computational Models of Visual Processing (pp. 7182). Cambridge, MA: MIT Press.Google Scholar
Lennie, P., and Movshon, J. A. (2005). Coding of color and form in the geniculostriate visual pathway. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2013–33.Google Scholar
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Leventhal, A. G., Rodieck, R. W., and Dreher, B. (1981). Retinal ganglion-cell classes in the Old-World monkey – morphology and central projections. Science, 213(4512), 1139–42.CrossRefGoogle ScholarPubMed
Li, W., and DeVries, S. H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience, 7(7), 751–6.CrossRefGoogle ScholarPubMed
MacLeod, D. I. A. (1978). Visual sensitivity. Annual Review of Psychology, 29, 613–45.CrossRefGoogle ScholarPubMed
Mariani, A. P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature, 308(5955), 184–6.CrossRefGoogle ScholarPubMed
Marimont, D. H., and Wandell, B. A. (1994). Matching color images – the effects of axial chromatic aberration. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11(12), 3113–22.CrossRefGoogle Scholar
Marrocco, R. T. (1976). Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. Journal of Neurophysiology, 39(2), 340–53.CrossRefGoogle ScholarPubMed
Marshak, D. W., and Martin, P. R. (2014). Short wavelength-sensitive cones and the processing of their signals. Visual Neuroscience, 31(Special Issue 02), 111–13.CrossRefGoogle ScholarPubMed
Martin, P. R., and Lee, B. B. (2014). Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Visual Neuroscience, 31(Special Issue 02), 177–87.CrossRefGoogle ScholarPubMed
Martin, P. R., White, A. J., Goodchild, A. K., Wilder, H. D., and Sefton, A. E. (1997). Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, 9(7), 1536–41.CrossRefGoogle ScholarPubMed
Martinez-Uriegas, E. (1985). A solution to the color-luminance ambiguity in the spatiotemporal signal of primate X cells. Investigative Ophthalmology and Visual Science, 26(suppl.), 183.Google Scholar
Maxwell, J. C. (1856). On the theory of colours in relation to colour-blindness. A letter to Dr. G. Wilson. Transactions of the Royal Scottish Society of Arts, 4, 394400.Google Scholar
Merbs, S. L., and Nathans, J. (1992a). Absorption spectra of human cone pigments. Nature, 356, 431–2.CrossRefGoogle ScholarPubMed
Merbs, S. L., and Nathans, J. (1992b). Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258(5081), 464–6.CrossRefGoogle ScholarPubMed
Merigan, W. H., and Eskin, T. A. (1986). Spatio-temporal vision of macaques with severe loss of Pb retinal ganglion cells. Vision Research, 26, 1751–61.CrossRefGoogle Scholar
Mitchell, D. E., and Rushton, W. A. H. (1971). Visual pigments in dichromats. Vision Research, 11(10), 1033–43.CrossRefGoogle ScholarPubMed
Miyagishima, K. J., Grünert, U., and Li, W. (2014). Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Visual Neuroscience, 31(Special Issue 02), 153–63.CrossRefGoogle ScholarPubMed
Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow gratings. Journal of Physiology, 359, 381400.CrossRefGoogle Scholar
Mullen, K. T., and Kingdom, F. A. A. (2002). Differential distributions of red-green and blue-yellow cone opponency across the visual field. Visual Neuroscience, 19(1), 109–18.CrossRefGoogle ScholarPubMed
Mullen, K. T., Sakurai, M., and Chu, W. (2005). Does L/M cone opponency disappear in human periphery? Perception, 34, 951–9.CrossRefGoogle Scholar
Nassi, J. J., and Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10(5), 360–72.CrossRefGoogle ScholarPubMed
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, S. G. (1986). Molecular genetics of inherited variation in human color vision. Science, 232(4747), 203–10.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, S. G. (1986). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232(4747), 193202.CrossRefGoogle ScholarPubMed
Navarro, R., Moreno, E., and Dorronsoro, C. (1998). Monochromatic aberrations and point-spread functions of the human eye across the visual field. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(9), 2522–9.CrossRefGoogle ScholarPubMed
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., and Williams, D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron, 35(4), 783–92.CrossRefGoogle ScholarPubMed
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252(5008), 971–4.CrossRefGoogle ScholarPubMed
Newton, I. (1704 ). Opticks: or a treatise of the reflexions, refractions, inflexons and colours of light. London: Samuel Smith and Benjamin Walford.Google Scholar
Newton, J. R., and Eskew, R. T. Jr. (2003). Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. Visual Neuroscience, 20(5), 511–21.CrossRefGoogle ScholarPubMed
Østerberg, G. A. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica 6(suppl.), 1102.Google Scholar
Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L., and Dacey, D. M. (2010). Blue-yellow opponency in primate S cone photoreceptors. Journal of Neuroscience, 30(2), 568–72.CrossRefGoogle ScholarPubMed
Paulus, W., and Kröger-Paulus, A. (1983). A new concept of retinal colour coding. Vision Research, 23(5), 529–40.CrossRefGoogle ScholarPubMed
Perlman, I., and Normann, R. A. (1998). Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Progress in Retinal and Eye Research, 17(4), 523–63.CrossRefGoogle ScholarPubMed
Perry, V. H., Oehler, R., and Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12(4), 1101–23.Google Scholar
Pharr, M., and Humphreys, G. (2010). Physically Based Rendering: From Theory to Implementation, 2nd edn. San Francisco, CA: Morgan Kaufmann.Google Scholar
Poirson, A. B., and Wandell, B. A. (1993). Appearance of colored patterns: pattern-color separability. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(12), 2458–70.CrossRefGoogle ScholarPubMed
Poirson, A. B., and Wandell, B. A. (1996). Pattern-color separable pathways predict sensitivity to simple colored patterns. Vision Research, 36(4), 515–26.CrossRefGoogle ScholarPubMed
Poirson, A. B., Wandell, B. A., Varner, D. C., and Brainard, D. H. (1990). Surface characterizations of color thresholds. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7(4), 783–9.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V. C., and Lutze, M. (1989). Heterochromatic modulation photometry. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 6(10), 1618–23.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V. C., and Wesner, M. F. (1991). Variability in cone populations and implications. In Valberg, A. and Lee, B. B. (eds.), From Pigments to Perception (pp. 2334). New York: Plenum.CrossRefGoogle Scholar
Polyak, S. L. (1941). The Retina. University of Chicago Press.Google Scholar
Pugh, E. N. Jr., and Lamb, T. D. (2000). Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In Stavenga, D. G., de Grip, W. J., and Pugh, E. N. (eds.), Handbook of Biological Physics, vol. III: Molecular Mechanisms of Visual Transduction (pp. 183255). Amsterdam: Elsevier.CrossRefGoogle Scholar
Pugh, E. N. Jr., Nikonov, S., and Lamb, T. D. (1999). Molecular mechanisms of vertebrate photoreceptor light adaptation. Current Opinion in Neurobiology, 9(4), 410–18.CrossRefGoogle ScholarPubMed
Purcell, E. M. (1965). Electricity and Magnetism. New York: McGraw-Hill.Google Scholar
Raviola, E., and Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America, 70, 1677–81.Google ScholarPubMed
Reid, R. C., and Shapley, R. M. (1992). Spatial structure of cone inputs to the receptive fields in primate lateral geniculate nucleus. Nature, 356(6371), 716–18.CrossRefGoogle Scholar
Robson, J. G. (1966). Spatial and temporal contrast sensitivity functions of the visual system. Journal of the Optical Society of America, 56, 1141–2.CrossRefGoogle Scholar
Rodieck, R. W. (1998). The First Steps in Seeing. Sunderland, MA: Sinauer.Google Scholar
Rodieck, R. W., Binmoeller, K. F., and Dineen, J. (1985). Parasol and midget ganglion-cells of the human retina. Journal of Comparative Neurology, 233(1), 115–32.Google ScholarPubMed
Roorda, A. (2011). Adaptive optics for studying visual function: a comprehensive review. Journal of Vision, 11(5).CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397(6719), 520–2.CrossRefGoogle ScholarPubMed
Ruderman, D. L., Cronin, T. W., and Chiao, C. C. (1998). Statistics of cone responses to natural images: implications for visual coding. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(8), 2036–45.CrossRefGoogle Scholar
Sakurai, M., and Mullen, K. T. (2006). Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity. Vision Research, 46(26), 4346–54.CrossRefGoogle ScholarPubMed
Schmidt, B. P., Neitz, M., and Neitz, J. (2014). Neurobiological hypothesis of color appearance and hue perception. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A195A207.CrossRefGoogle ScholarPubMed
Sekiguchi, N., Williams, D. R., and Brainard, D. H. (1993a). Aberration-free measurements of the visibility of isoluminant gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2105–17.CrossRefGoogle ScholarPubMed
Sekiguchi, N., Williams, D. R., and Brainard, D. H. (1993b). Efficiency in detection of isoluminant and isochromatic interference fringes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2118–33.CrossRefGoogle ScholarPubMed
Sharpe, L. T., Stockman, A., Jägla, W., and Jägle, H. (2011). A luminous efficiency function, V*(λ), for daylight adaptation: a correction. Color Research & Application, 36, 42–6.CrossRefGoogle Scholar
Sharpe, L. T., Stockman, A., Jägle, H., and Nathans, J. (1999). Opsin genes, cone photopigments, color vision and colorblindness. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 351). Cambridge University Press.Google Scholar
Sher, A., and DeVries, S. H. (2012). A non-canonical pathway for mammalian blue-green color vision. Nature Neuroscience, 15(7), 952–3.CrossRefGoogle ScholarPubMed
Smith, V. C., Lee, B. B., Pokorny, J., Martin, P. R., and Valberg, A. (1992). Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. Journal of Physiology, 458, 191221.CrossRefGoogle Scholar
Smith, V. C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15, 161–71.CrossRefGoogle Scholar
Solomon, S. G., Lee, B. B., White, A. J., Rüttiger, L., and Martin, P. R. (2005). Chromatic organization of ganglion cell receptive fields in the peripheral retina. Journal of Neuroscience, 25(18), 4527–39.CrossRefGoogle ScholarPubMed
Solomon, S. G., and Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8(4), 276–86.CrossRefGoogle ScholarPubMed
Stiles, W. S. (1949). Incremental thresholds and the mechanisms of colour vision. Documenta Ophthalmologica, 3, 138–63.CrossRefGoogle Scholar
Stiles, W. S., and Burch, J. M. (1959). NPL colour-matching investigation: final report (1958). Optica Acta, 6, 126.CrossRefGoogle Scholar
Stockman, A. (2004). Colorimetry. In Brown, T. G., Creath, K., Kogelnik, H., Kriss, M. A., Schmit, J., and Weber, M. J. (eds.), The Optics Encyclopedia: Basic Foundations and Practical Applications (vol. I, pp. 207–26). Berlin: Wiley-VCH.Google Scholar
Stockman, A., and Brainard, D. H. (2010). Color vision mechanisms. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. and van Stryland, E. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 11.1111.104). New York: McGraw Hill.Google Scholar
Stockman, A., Langendörfer, M., Smithson, H. E., and Sharpe, L. T. (2006). Human cone light adaptation: from behavioral measurements to molecular mechanisms. Journal of Vision, 6(11), 11941213.CrossRefGoogle ScholarPubMed
Stockman, A., MacLeod, D. I. A., and Johnson, N. E. (1993). Spectral sensitivities of the human cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(12), 24912521.CrossRefGoogle ScholarPubMed
Stockman, A., and Sharpe, L. T. (1999). Cone spectral sensitivities and color matching. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 5387). Cambridge University Press.Google Scholar
Stockman, A., and Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40(13), 1711–37.Google ScholarPubMed
Stromeyer, C. F. III, Cole, G. R., and Kronauer, R. E. (1985). Second-site adaptation in the red-green chromatic pathways. Vision Research, 25(2), 219–37.CrossRefGoogle ScholarPubMed
Stromeyer, C. F. III, Lee, J., and Eskew, R. T. Jr. (1992). Peripheral chromatic sensitivity for flashes: a post-receptoral red-green asymmetry. Vision Research, 32(10), 1865–73.CrossRefGoogle ScholarPubMed
Szmajda, B. A., Buzás, P., FitzGibbon, T., and Martin, P. R. (2006). Geniculocortical relay of blue-off signals in the primate visual system. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19512–17.Google ScholarPubMed
Szmajda, B. A., Grunert, U., and Martin, P. R. (2008). Retinal ganglion cell inputs to the koniocellular pathway. Journal of Comparative Neurology, 510(3), 251–68.Google Scholar
Tailby, C., Solomon, S. G., Dhruv, N. T., and Lennie, P. (2008). Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience, 28(5), 1131–9.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S. G., and Lennie, P. (2008). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal of Neuroscience, 28(15), 4078–87.CrossRefGoogle ScholarPubMed
Tsukamoto, T., Masarachia, P., Schein, S. J., and Sterling, P. (1992). Gap junctions between the pedicles of macaque foveal cones. Vision Research, 32(10), 1809–15.CrossRefGoogle ScholarPubMed
Vakrou, C., Whitaker, D., McGraw, P. V., and McKeefry, D. (2005). Functional evidence for cone-specific connectivity in the human retina. Journal of Physiology, 566(Pt 1), 93102.CrossRefGoogle ScholarPubMed
Valberg, A., Lee, B. B., and Tigwell, D. A. (1986). Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Research, 26(7), 1061–4.CrossRefGoogle ScholarPubMed
Vienot, F., and Brettel, H. (2014). The Verriest Lecture. Visual properties of metameric blacks beyond cone vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A3846.CrossRefGoogle ScholarPubMed
Vimal, R. L. P., Smith, V. C., Pokorny, J., and Shevell, S. K. (1989). Foveal cone thresholds. Vision Research, 29(1), 6178.CrossRefGoogle ScholarPubMed
Vos, J. J. (1978). Colorimetric and photometric properties of a 2-deg fundamental observer. Color Research & Application, 3, 125–8.CrossRefGoogle Scholar
Vos, J. J., and Walraven, P. L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11(8), 799818.CrossRefGoogle ScholarPubMed
Wagner, G., and Boynton, R. M. (1972). Comparison of four methods of heterochromatic photometry. Journal of the Optical Society of America, 62(12), 1508–15.CrossRefGoogle ScholarPubMed
Wandell, B. A. (1995). Foundations of Vision. Sunderland, MA: Sinauer.Google Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience, 5(10), 747–57.CrossRefGoogle ScholarPubMed
Wässle, H., and Boycott, B. B. (1991). Functional architecture of the mammalian retina. Physiological Reviews, 71(2), 447–80.CrossRefGoogle ScholarPubMed
Weitz, C. J., Miyake, Y., Shinzato, K., Montag, E. D., Zrenner, E., Went, L. N., and Nathans, J. (1992). Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. American Journal of Genetics, 50(3), 498507.Google ScholarPubMed
Weitz, C. J., Went, L. N., and Nathans, J. (1992). Human tritanopia associated with a 3rd amino-acid substitution in the blue-sensitive visual pigment. American Journal of Human Genetics, 51(2), 444–6.Google Scholar
Went, L. N., and Pronk, N. (1985). The genetics of tritan disturbances. Human Genetics, 69(3), 255–62.CrossRefGoogle ScholarPubMed
Westheimer, G. (1964). Pupil size and visual resolution. Vision Research, 4(1–2), 3945.CrossRefGoogle ScholarPubMed
Westheimer, G. (1986). The eye as an optical instrument. In Boff, K. R., Kaufman, L. and Thomas, J. P. (eds.), Handbook of Perception and Human Performance (vol. I, pp. 120). New York: Wiley.Google Scholar
Wiesel, T. N., and Hubel, D. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29(6), 1115–56.CrossRefGoogle ScholarPubMed
Williams, D. R. (1985). Aliasing in human foveal vision. Vision Research, 25(2), 195205.CrossRefGoogle ScholarPubMed
Williams, D. R., Artal, P., Navarro, R., McMahon, M. J., and Brainard, D. H. (1996). Off-axis optical quality and retinal sampling in the human eye. Vision Research, 36(8), 1103–14.CrossRefGoogle ScholarPubMed
Williams, D. R., and Collier, R. J. (1983). Consequences of spatial sampling by a human photoreceptor mosaic. Science, 221, 385–7.CrossRefGoogle ScholarPubMed
Williams, D. R., MacLeod, D. I. A., and Hayhoe, M. M. (1981). Foveal tritanopia. Vision Research, 19(9), 1341–56.Google Scholar
Willmer, E. N. (1944). Colour of small objects. Nature, 153, 774–5.CrossRefGoogle Scholar
Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals. Nature, 356, 431–3.CrossRefGoogle Scholar
Wyszecki, G., and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. New York: Wiley.Google Scholar
Xiao, F., DiCarlo, J. M., Catrysse, P. B., and Wandell, B. A. (2002). High dynamic range imaging of natural scenes. Color and Imaging Conference, 2002(1), 337–42.Google Scholar
Xiao, Y. (2014). Processing of the S-cone signals in the early visual cortex of primates. Visual Neuroscience, 31(Special Issue 02), 189–95.CrossRefGoogle ScholarPubMed
Yamauchi, Y., Williams, D. R., Brainard, D. H., Roorda, A., Carroll, J., Neitz, M., Neitz, J., et al. (2002). What determines unique yellow, L/M cone ratio or visual experience? Paper presented at the 9th Congress of the International Colour Association, Proceedings of SPIE, 4421.CrossRefGoogle Scholar
Yellott, J. I. Jr., Wandell, B. A., and Cornsweet, T. N. (1984). The beginnings of visual perception: the retinal image and its initial encoding. In Darien-Smith, I. (ed.), Handbook of Physiology: The Nervous System (vol. III, pp. 257316). New York: Easton.Google Scholar
Yin, L., Smith, R. G., Sterling, P., and Brainard, D. H. (2009). Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. Journal of Neuroscience, 29(9), 2706–24.CrossRefGoogle Scholar
Zaidi, F. H., Hull, J. T., Peirson, S. N., Wulff, K., Aeschbach, D., Gooley, J. J., Brainard, G. C., et al. (2007). Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Current Biology, 17(24), 2122–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×