Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T12:35:26.484Z Has data issue: false hasContentIssue false

8 - Vertebrate life at high altitude

Published online by Cambridge University Press:  05 June 2012

Göran E. Nilsson
Affiliation:
Universitetet i Oslo
Get access

Summary

Introduction

The physiological stresses and limited resources at high altitude pose limits on vertebrate life in this environment. Primary stresses include low oxygen pressure, temperatures, and humidity, and increased radiation. High-altitude ecosystems are characterized by less diversity, rugged topography, and marginal availability of certain nutrients. However, given the amazing physiological abilities to cope with low oxygen described in this book, it is not surprising that there are numerous examples of life at high altitude. Representatives from every class of vertebrates are found living at altitudes of 4000 m above sea level, where the PO2 is less than 100 Torr, including fish (trout) in Andean lakes and rivers (Bouverot et al., 1985). (A pressure of 1 Torr = 1/760 atmosphere = 1 mmHg). The primary focus of this chapter on species that are native to high altitudes is to emphasize adaptations to life with limited oxygen instead of reviewing physiological acclimatization to high altitude. Adaptations to hypoxia in fishes are covered in Chapter 5, so here we focus on air-breathing vertebrates.

The high-altitude environment

Paul Bert first demonstrated that the primary physiological challenge at high altitude is reduced oxygen partial pressure (PO2) as a result of reduced barometric pressure (Bouverot et al.,1985). Various algorithms have been devised to estimate the fall in barometric pressure with altitude, such as the International Civil Aviation Organization (1964) or National Oceanic and Atmospheric Administration (1976) standard atmospheres.

Type
Chapter
Information
Respiratory Physiology of Vertebrates
Life With and Without Oxygen
, pp. 265 - 299
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, D. L. (2006). Flight performance and competitive displacement of hummingbirds across elevational gradients. Am. Nat., 167, 216–29.CrossRefGoogle ScholarPubMed
Altshuler, D. L., Dudley, R. and McGuire, J. A. (2004). Resolution of a paradox: hummingbird flight at high elevation does not come without a cost. Proc. Natl. Acad. Sci. USA, 101, 17731–6.CrossRefGoogle Scholar
Anand, I. S., Harris, E., Ferrari, R., Pearce, P. and Harris, P. (1986). Pulmonary hemodynamics of the yak, cattle and cross breeds at high altitude. Thorax, 41, 696–700.CrossRefGoogle ScholarPubMed
Banchero, N. and Grover, R. F. (1972). Effect of different simulated altitude on O2 transport in llama and sheep. Am. J. Physiol., 222, 1239–45.Google Scholar
Basnyat, B. and Murdoch, D. R. (2003). High-altitude illness. Lancet, 361, 1967–74.CrossRefGoogle ScholarPubMed
Beall, C. M. (2007). Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. USA, 104 (Suppl. 1), 8655–60.CrossRefGoogle ScholarPubMed
Beall, C. M., Strohl, K. P., Blangero, J., et al. (1997). Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am. J. Phys. Anthropol., 104, 427–47.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Bebout, D. E., Storey, D., Roca, J., et al. (1989). Effects of altitude acclimatization on pulmonary gas exchange during exercise. J. Appl. Physiol., 67, 2286–95.CrossRefGoogle ScholarPubMed
Bencowitz, H. Z., Wagner, P. D. and West, J. B. (1982). Effect of change in P50 on exercise tolerance at high altitude: a theoretical study. J. Appl. Physiol., 53, 1487–95.CrossRefGoogle ScholarPubMed
Berger, M. (1974). Energiewechsel von Kolibris beim Schwirrflug unter Höhenbedingungen, 115, 273–88.
Bisgard, G. E. (1977). Pulmonary hypertension in cattle. Adv. Vet. Sci. Comp. Med. 21, 151–72.Google ScholarPubMed
Black, C. P. and Tenney, S. M. (1980a). Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol., 39, 217–39.CrossRefGoogle ScholarPubMed
Black, C. P. and Tenney, S. M. (1980b). Pulmonary hemodynamic responses to acute and chronic hypoxia in two waterfowl species. Comp. Biochem. Physiol., 67A, 291–3.CrossRefGoogle Scholar
Boggs, D. F. (1995). Hypoxic ventilatory control and hemoglobin oxygen affinity. In Hypoxia and the Brain, ed. Sutton, J. R, Houston, C. S. and Coates, G.. Burlington: Queen City Printers, pp. 69–88.Google Scholar
Bouverot, P., Farner, D. S., Heinrich, B., et al. (1985). Adaptation to Altitude-hypoxia in Vertebrates. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Boyer, S. J. and Blume, F. D. (1984). Weight loss and changes in body composition at high altitude. J. Appl. Physiol., 57, 1580–5.CrossRefGoogle ScholarPubMed
Brooks, G. A. and Butterfield, G. (2001). Metabolic responses of lowlanders to high altitude exposure: malnutrition versus the effects of hypoxia. In Lung Biology in Health and Disease, High Altitude, ed. Hornbein, T. F. and Schoene, R. B.. New York: Marcel Dekker, pp. 569–99.Google Scholar
Brutsaert, T. D. (2001). Limits on inferring genetic adaptation to high altitude in Himalayan and Andean populations. High Altitude Med. Biol., 2, 211–25.CrossRefGoogle ScholarPubMed
Busch, T., Bartsch, P., Pappert, D., et al. (2001). Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am. J. Respir. Crit. Care Med., 163, 368–73.CrossRefGoogle ScholarPubMed
Butler, P. J. and Bishop, C. M. (2000). Flight. In Sturkie's Avian Physiology, ed. Whittow, G. C.. San Diego: Academic Press, pp. 391–435.CrossRefGoogle Scholar
Chappell, M. A. and Snyder, L. R. (1984). Biochemical and physiological correlates of deer mouse alpha-chain hemoglobin polymorphisms. Proc. Natl. Acad. Sci. USA, 81, 5484–8.CrossRefGoogle Scholar
Chen, Q. H., Ge, R. L., Wang, X. Z., et al. (1997). Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. J. Appl. Physiol., 83, 661–7.CrossRefGoogle Scholar
Clemens, D. T. (1988). Ventilation and oxygen consumption in rosy finches and house finches at sea level and high altitude. J. Comp. Physiol. B, 158, 547–66.CrossRefGoogle Scholar
Clemens, D. T. (1990). Interspecific variation and effects of altitude on blood properties of rosy finches (Leucosticte arctoa) and house finches (Carpodacus mexicanus). Physiol. Zool., 63, 288–307.CrossRefGoogle Scholar
Cremona, G., Asnaghi, R., Baderna, P., et al. (2002). Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. Lancet, 359, 303–9.CrossRefGoogle ScholarPubMed
Cruz, J. C., Reeves, J. T., Russell, B. E., Alexander, A. F. and Will, D. H. (1980). Embryo transplanted calves: the pulmonary hypertensive trait is genetically transmitted. Proc. Soc. Exp. Biol. Med. 164, 142–5.CrossRefGoogle ScholarPubMed
Dempsey, J. A., Hanson, P. G. and Henderson, K. S. (1984). Exercised-induced arterial hypoxaemia in healthy human subjects at sea level. J. Physiol. (Lond), 355, 161–75.CrossRefGoogle Scholar
Drew, K. L., Harris, M. B., Lamanna, J. C., et al. (2004). Hypoxia tolerance in mammalian heterotherms. J. Exp. Biol., 207, 3155–62.CrossRefGoogle ScholarPubMed
Dunmire, W. W. (1960). An altitudinal survey of reproduction in Peromyscus maniculatus. Ecology, 41, 174–82.CrossRefGoogle Scholar
Duplain, H., Sartori, C., Lepori, M., et al. (2000). Exhaled nitric oxide in high-altitude pulmonary edema: role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am. J. Respir. Crit. Care Med., 162, 221–4.CrossRefGoogle ScholarPubMed
Durmowicz, A. G., Hofmeister, S., Kadyraliev, T. K., Aldashev, A. A. and Stenmark, K. R. (1993). Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol., 74, 2276–85.CrossRefGoogle ScholarPubMed
Eldridge, M. W., Podolsky, A., Richardson, R. S., et al. (1996). Pulmonary hemodynamic response to exercise in subjects with prior high-altitude pulmonary edema. J. Appl. Physiol., 81, 911–21.CrossRefGoogle ScholarPubMed
Faraci, F. M. (1991). Adaptations to hypoxia in birds: how to fly high. Ann. Rev. Physiol., 53, 59–70.CrossRefGoogle ScholarPubMed
Faraci, F. M. and Fedde, M. R. (1986). Regional circulatory responses to hypocapnia and hypercapnia in bar-headed geese. Am. J. Physiol., 250, R499–504.Google ScholarPubMed
Faraci, F. M., Kilgore, D. L. and Fedde, M. R. (1984a). Attenuated pulmonary pressor response to hypoxia in bar-headed geese. Am. J. Physiol., 247, R402–3.Google ScholarPubMed
Faraci, F. M., Kilgore, D. L. and Fedde, M. R. (1984b). Oxygen delivery to the heart and brain during hypoxia: pekin duck vs. bar-headed goose. Am. J. Physiol., 16, R69–75.Google Scholar
Faraci, F. M., Kilgore, D. L., Jr. and Fedde, M. R. (1985). Blood flow distribution during hypocapnic hypoxia in Pekin ducks and bar-headed geese. Respir. Physiol., 61, 21–30.CrossRefGoogle ScholarPubMed
Fayed, N., Modrego, P. J. and Morales, H. (2006). Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. Am. J. Med., 119, 168e1–6.CrossRefGoogle ScholarPubMed
Fedde, M. R., Orr, J. A., Shams, H. and Scheid, P. (1989). Cardiopulmonary function in exercising bar-headed geese during normoxia and hypoxia. Respir. Physiol., 77, 239–62.CrossRefGoogle ScholarPubMed
Fidone, S. J., Gonzalez, C., Cherniack, N. S. and Widdicombe, J. G. (1986). Initiation and control of chemoreceptor activity in the carotid body. In Handbook of Physiology: the Respiratory System – Control of Breathing, ed. Fisherman, A. P.. Baltimore, MD: Waverly Press, pp. 247–312.Google Scholar
Garland, T., Jr. (2001). Phylogenetic comparison and artificial selection: two approaches in evolutionary physiology. Adv. Exp. Med. Biol., 502, 107–32.CrossRefGoogle ScholarPubMed
Garland, T., Jr. and Adolph, S. C. (1994). Why not to do two species comparisons – limitations on inferring adaptation. Physiol. Zool., 67, 797–828.CrossRefGoogle Scholar
Garrido, E., Castello, A., Ventura, J. L., Capdevila, A. and Rodriguez, F. A. (1993). Cortical atrophy and other brain magnetic resonance imaging (MRI). changes after extremely high-altitude climbs without oxygen. Int. J. Sports Med., 14, 232–4.CrossRefGoogle ScholarPubMed
Garrido, E., Segura, R., Capdevila, A., et al. (1996). Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs?Clin. Sci. (Lond), 90, 81–5.CrossRefGoogle ScholarPubMed
Glover, G. and Newsom, I. (1915). Dropsy of high altitudes. Colo. Agric. Exp. Sta. Bull. 204, 3–24.Google Scholar
Grinnell, J. and Storer, T. I. (1924). Animal Life in the Yosemite, Berkeley: University of California.Google Scholar
Grubb, B., Colacino, J. M. and Schmidt-Nielsen, K. (1978). Cerebral blood flow in birds: effect of hypoxia. Am. J. Physiol., 234, H230–4.Google ScholarPubMed
Grubb, B., Mills, C. D., Colacino, J. M. and Schmidt-Nielsen, K. (1977). Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am. J. Physiol., 232, H596–601.Google ScholarPubMed
Grunig, E., Mereles, D., Hildebrandt, W., et al. (2000). Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J. Am. Coll. Cardiol., 35, 980–7.CrossRefGoogle ScholarPubMed
Hackett, P. H. (1999a). High altitude cerebral edema and acute mountain sickness: a pathophysiology update. Adv. Exp. Med. Biol., 474, 23–45.CrossRefGoogle ScholarPubMed
Hackett, P. H. (1999b). The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ. Med., 10, 97–109.CrossRefGoogle ScholarPubMed
Hackett, P. H. and Rennie, D. (1976). The incidence, importance, and prophylaxis of acute mountain sickness. Lancet, 2, 1149–55.CrossRefGoogle ScholarPubMed
Hackett, P. H. and Roach, R. C. (2001). High-altitude illness. New Engl. J. Med., 345, 107–14.CrossRefGoogle ScholarPubMed
Hackett, P. H., Roach, R. C., Schoene, R. B., Harrison, G. L. and Mills, W. J. (1988). Abnormal control of ventilation in high-altitude pulmonary edema. J. Appl. Physiol., 64, 1268–72.CrossRefGoogle ScholarPubMed
Hackett, P. H., Yarnell, P. R., Hill, R., et al. (1998). High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA, 280, 1920–5.CrossRefGoogle ScholarPubMed
Hammond, K. A., Szewczak, J. M. and Krol, E. (2001). Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J. Exp. Biol., 204, 1991–2000.Google ScholarPubMed
Hansen, J. E. and Evans, W. O. (1970). A hypothesis regarding the pathophysiology of acute mountain sickness. Arch. Environ. Health, 21, 666–9.CrossRefGoogle ScholarPubMed
Havryk, A. P., Gilbert, M. and Burgess, K. R (2002). Spirometry values in Himalayan high altitude residents (Sherpas). Respir. Physiol. Neurobiol., 132, 223–32.CrossRefGoogle Scholar
Hayes, J. P. and O'Connor, C. S. (1999). Natural selection on thermogenic capacity of high-altitude deer mice. Evolution, 53, 1280–7.CrossRefGoogle ScholarPubMed
Hedrick, M. S., Palioca, W. B. and Hillman, S. S. (1999). Effects of temperature and physical activity on blood flow shunts and intracardiac mixing in the toad Bufo marinus. Physiol. Biochem. Zool., 72, 509–19.CrossRefGoogle ScholarPubMed
Hepple, R. T., Agey, P. J., Hazelwood, L., et al. (1998). Increased capillarity in leg muscle of finches living at altitude. J. Appl. Physiol., 85, 1871–6.CrossRefGoogle ScholarPubMed
Hicks, J. W. and Wood, S. C. (1985). Temperature regulation in lizards: effects of hypoxia. Am. J. Physiol., 248, R595–600.Google ScholarPubMed
Hochachka, P. W. (1998). Mechanism and evolution of hypoxia-tolerance in humans. J. Exp. Biol., 201, 1243–54.Google ScholarPubMed
Hochachka, P. W. and Monge, C. (2000). Evolution of human hypoxia tolerance physiology. Adv. Exp. Med. Biol., 475, 25–43.CrossRefGoogle ScholarPubMed
Hochachka, P. W. and Somero, G. N. (1984). Biochemical Adaptation. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford: Oxford University Press.Google Scholar
Holle, J. P., Heisler, N. and Scheid, P. (1978). Blood flow distribution in the duck lung and its control by respiratory gases. Am. J. Physiol., 234, R146–54.Google ScholarPubMed
Holt, T. N. and Ramirez, G. (1998). Genetic adaptation of cattle to high altitude. Am. Zool., 38, 10A.Google Scholar
Hopkins, S. R., Bayly, W. M., Slocombe, R. F., Wagner, H. and Wagner, P. D. (1998). Effect of prolonged heavy exercise on pulmonary gas exchange in horses. J. Appl. Physiol., 84, 1723–30.CrossRefGoogle ScholarPubMed
Hopkins, S. R., Garg, J., Bolar, D. S., Balouch, J. and Levin, D. L. (2005). Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am. J. Respir. Crit. Care Med., 171, 83–7.CrossRefGoogle ScholarPubMed
Hopkins, S. R., McKenzie, D. C., Schoene, R. B., Glenny, R. and Robertson, H. T. (1994). Pulmonary gas exchange during exercise in athletes I: ventilation-perfusion mismatch and diffusion limitation. J. Appl. Physiol., 77, 912–17.CrossRefGoogle ScholarPubMed
Hopkins, S. R., Schoene, R. B., Henderson, W. R., et al. (1997). Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am. J. Respir. Crit. Care Med., 155, 1090–4.CrossRefGoogle ScholarPubMed
Hoppeler, H., Howald, H. and Cerretelli, P. (1990). Human muscle structure after exposure to extreme altitude. Experientia, 46, 1185–7.CrossRefGoogle ScholarPubMed
Hornbein, T. F., Townes, B. D., Schoene, R. B., Sutton, J. R. and Houston, C. S. (1989). The cost to the central nervous system of climbing to extremely high altitude. New Engl. J. Med., 321, 1714–19.CrossRefGoogle ScholarPubMed
Huey, R. B., Eguskitza, X. and Dillon, M. (2001). Mountaineering in thin air. Patterns of death and of weather at high altitude. Adv. Exp. Med. Biol., 502, 225–36.CrossRefGoogle ScholarPubMed
Huey, R. B., Salisbury, R., Wang, J. L. and Mao, M. (2007). Effects of age and gender on success and death of mountaineers on Mount Everest. Biol. Lett., 3, 498–500.CrossRefGoogle ScholarPubMed
Hultgren, H. N., Grover, R. F. and Hartley, L. H. (1971). Abnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema. Circulation, 44, 759–70.CrossRefGoogle ScholarPubMed
Hutchison, V. H., Haines, H. B. and Engbretson, G. (1976). Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Respir. Physiol. 27, 115–29.CrossRefGoogle ScholarPubMed
Icenogle, M., Kilgore, D., Sanders, J., Caprihan, A. and Roach, R. C. (1999). Cranial CSF volume (cCSF) is reduced by altitude exposure but is not related to early acute mountain sickness (AMS) (Abstract). In Hypoxia: into the Next Millennium, ed. Roach, R. C., Wagner, P. D., and Hackett, P. H.. New York: Plenum/Kluwer Academic Publishing, p. 392.Google Scholar
Julian, R. J. (1993). Ascites in poultry. Avian Pathol., 23, 419–54.CrossRefGoogle Scholar
Kawashima, A., Kubo, K., Kobayashi, T. and Sekiguchi, M. (1989). Hemodynamic responses to acute hypoxia, hypobaria, and exercise in subjects susceptible to high-altitude pulmonary edema. J. Appl. Physiol., 67, 1982–9.CrossRefGoogle ScholarPubMed
Kayser, B., Hoppeler, H., Claassen, H. and Cerretelli, P. (1991). Muscle structure and performance capacity of Himalayan Sherpas. J. Appl. Physiol., 70, 1938–42.CrossRefGoogle ScholarPubMed
Kobayashi, T., Koyama, S., Kubo, K., Fukushima, M. and Kusama, S. (1987). Clinical features of patients with high-altitude pulmonary edema in Japan. Chest, 92, 814–21.CrossRefGoogle ScholarPubMed
Lahiri, S. (1975). Blood oxygen affinity and alveolar ventilation in relation in body weight in mammals. Am. J. Physiol., 229, 529–36.Google ScholarPubMed
Laybourne, R. C. (1974). Collison between a vulture and an aircraft at an altitude of 37,000 ft. Wilson Bull, 86, 461–2.Google Scholar
Leon-Velarde, F. and Monge, C. C. (2004). Avian embryos in hypoxic environments. Respir. Physiol. Neurobiol., 141, 331–43.CrossRefGoogle ScholarPubMed
Leon-Velarde, F. and Richalet, J. P. (2006). Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt. Med. Biol., 7, 125–37.CrossRefGoogle ScholarPubMed
Leon-Velarde, F., Maggiorini, M., Reeves, J. T., et al. (2005). Consensus statement on chronic and subacute high altitude diseases. High Alt. Med. Biol., 6, 147–57.CrossRefGoogle ScholarPubMed
León-Velarde, F., Muizon, C., Palacios, J. A., Clark, D. and Monge, C. (1996). Hemoglobin affinity and structure in high-altitude and sea-level carnivores from Peru. Comp. Biochem. Physiol. Part A, Physiology, 113, 407–11.CrossRefGoogle ScholarPubMed
Llanos, A. J., Riquelme, R. A., Herrera, E. A., et al. (2007). Evolving in thin air – lessons from the llama fetus in the altiplano. Respir. Physiol. Neurobiol. 158, 298–306.CrossRefGoogle ScholarPubMed
Llanos, A. J., Riquelme, R. A., Sanhueza, E. M., et al. (2003). The fetal llama versus the fetal sheep: different strategies to withstand hypoxia. High Alt. Med. Biol., 4, 193–202.CrossRefGoogle ScholarPubMed
Loeppky, J. A., Icenogle, M., Scotto, P., et al (1997). Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria. Respir. Physiol., 107, 231–9.CrossRefGoogle ScholarPubMed
Longo, L. D. (1987). Respiratory gas exchange in the placenta. Handbook of Physiology, Section 3, The Respiratory System, Volume IV. Gas Exchange, ed. Farhi, L. E. and Tenney, S. M.. Bethesda, MD: American Physiological Society, pp. 351–401.Google Scholar
Luft, U. C. (1965). Aviation physiology – the effects of altitude. Handbook of Physiology, Section 3: The Respiratory System, Volume II, ed. Fenn, W. O and Rahn, H.. Washington, DC: American Physiological Society, pp. 1099–145.Google Scholar
MacDougall, J. D., Green, H. J., Sutton, J. R., et al. (1991). Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol. Scand., 142, 421–7.CrossRefGoogle ScholarPubMed
MacMillen, R. E. and Garland, T., Jr., (1989). Adaptive physiology. In Advances in the Study of Peromyscus (Rodentia), ed. Kirkland, G. L. and Layne, J. N.. Lubbock: Texas Tech University Press, pp. 143–68.Google Scholar
Maggiorini, M., Brunner-La Rocca, H. P., Peth, S., et al. (2006). Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: a randomized trial. Ann. Intern. Med., 145, 497–506.CrossRefGoogle ScholarPubMed
Maina, J. N. (2000). What it takes to fly: the structural and functional respiratory refinements in birds and bats. J. Exp. Biol., 203, 3045–64.Google ScholarPubMed
Maina, J. N., King, A. S. and Settle, G. (1989). An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons. Phil. Trans. R. Soc. Lond. B Biol. Sci., 326, 1–57.CrossRefGoogle ScholarPubMed
Mairbaurl, H., Schwobel, F., Hoschele, S., et al. (2003). Altered ion transporter expression in bronchial epithelium in mountaineers with high-altitude pulmonary edema. J. Appl. Physiol., 95, 1843–50.CrossRefGoogle ScholarPubMed
Mathieu-Costello, O. (1989). Muscle capillary tortuosity in high altitude mice depends on sarcomere length. Respir. Physiol., 76, 289–302.CrossRefGoogle ScholarPubMed
Mathieu-Costello, O. (1991). Morphometric analysis of capillary geometry in pigeon pectoralis muscle. Am. J. Anat., 191, 74–84.CrossRefGoogle ScholarPubMed
Mathieu-Costello, O. (2001). Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism. High Alt. Med. Biol., 2, 413–25.CrossRefGoogle ScholarPubMed
Mathieu-Costello, O., Agey, P. J., Wu, L., Szewczak, J. M. and Macmillen, R. E. (1998). Increased fiber capillarization in flight muscle of finch at altitude. Respir. Physiol., 111, 189–99.CrossRefGoogle ScholarPubMed
Matsuzawa, Y., Fujimoto, K., Kobayashi, T., et al. (1989). Blunted hypoxic ventilatory drive in subjects susceptible to high-altitude pulmonary edema. J. Appl. Physiol., 66, 1152–7.CrossRefGoogle ScholarPubMed
Matsuzawa, Y., Kobvayashi, T., Fujimoto, K. and Schinozaki, S. (1992). Cerebral edema in acute mountain sickness. In High-altitude Medicine, ed. G. Ueda, J. T. and Sekiguchi, M.. Matsumoto, Japan: Shinshu University, pp. 300–4.Google Scholar
Mejia, O., Leon-Velarde, F. and Monge, C. C. (1994). The effect of inositol hexaphosphate in the high-affinity hemoglobin of the Andean chicken (Gallus gallus). Comp. Biochem. Physiol. 109B, 437–41.Google Scholar
Monge, C. (1942). Life in the Andes and chronic mountain sickness. Science, 95, 79–84.CrossRefGoogle ScholarPubMed
Monge, C. and Leon-Velarde, F. (1991). Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol. Rev., 71, 1135–72.PubMed
Monge, C. and Whittembury, J. (1974). Increased hemoglobin-oxygen affinity at extremely high altitudes. Science, 186, 843.Google ScholarPubMed
Moore, L. G., Niermeyer, S. and Vargas, E. (2007). Does chronic mountain sickness (CMS) have perinatal origins?Respir. Physiol. Neurobiol., 158, 180–9.CrossRefGoogle ScholarPubMed
Mortola, J. P. (1999). How newborn mammals cope with hypoxia. Respir. Physiol., 116, 95–103.CrossRefGoogle ScholarPubMed
Muza, S. R., Lyons, T. P. and Rock, P. B. (1999). Effect of altitude exposure on brain volume and development of acute mountain sickness. In Hypoxia: into the Next Millennium, ed. Roach, R. C., Wagner, P. D. and Hackett, P. H.. Advances in Experimental Medicine and Biology Series, 474. New York: Kluwer Academic/Plenum, p. 414.Google Scholar
Navas, C. A. and Chaui-Berlinck, J. G. (2007). Respiratory physiology of high-altitude anurans: 55 years of research on altitude and oxygen. Respir. Physiol. Neurobiol. 158, 307–13.CrossRefGoogle ScholarPubMed
Neya, M., Enoki, T., Kumai, Y., Sugoh, T. and Kawahara, T. (2007). The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J. Appl. Physiol., 103, 828–34.CrossRefGoogle ScholarPubMed
Oelz, O., Howald, H., Di Prampero, P. E., et al. (1986). Physiological profile of world-class high-altitude climbers. J. Appl. Physiol., 60, 1734–42.CrossRefGoogle ScholarPubMed
Oelz, O., Maggiorini, M., Ritter, M., et al. (1989). Nifedipine for high altitude pulmonary oedema. Lancet, 2, 1241–4.CrossRefGoogle ScholarPubMed
Ostojic, H., Monge, C. C. and Cifuentes, V. (2000). Hemoglobin affinity for oxygen in three subspecies of toads (Bufo sp.) living at different altitudes. Biol. Res., 33, 5–10.CrossRefGoogle ScholarPubMed
Packard, G. (1971). Oxygen consumption of montane and piedmont chorus frogs (Pseudacris triseriata). Physiol. Zool., 44, 90–7.CrossRefGoogle Scholar
Podolsky, A., Eldridge, M. W., Richardson, R. S., et al. (1996). Exercise-induced VA/Q inequality in subjects with prior high-altitude pulmonary edema. J. Appl. Physiol., 81, 922–32.CrossRefGoogle ScholarPubMed
Powell, F. L. (1993). Birds at altitude. In Respiration in Health and Disease, ed. Scheid, P.. Stuttgart: G. Fisher, pp. 352–8.Google Scholar
Powell, F. L. (2003). Functional genomics and the comparative physiology of hypoxia. Ann. Rev. Physiol., 65, 203–30.CrossRefGoogle ScholarPubMed
Powell, F. L. and Scheid, P. (1989). Physiology of gas exchange in the avian respiratory system. In Form and Function in Birds, ed. King, A. S. and McLelland, J.. San Diego: Academic Press, pp. 393–437.Google Scholar
Powell, F. L. (2000). Respiration. In Sturkie's Avian Physiology, ed. Whittow, G. C.. San Diego: Academic Press, pp. 233–59.CrossRefGoogle Scholar
Powell, F. L., Hastings, R. H. and Mazzone, R. W. (1985). Pulmonary vascular resistance during unilateral pulmonary arterial occlusion in ducks. Am. J. Physiol., R39–43.Google ScholarPubMed
Poyart, C., Wajcman, H. and Kister, J. (1992). Molecular adaptation of hemoglobin function in mammals. Respir. Physiol., 90, 3–17.CrossRefGoogle ScholarPubMed
Rose, M. S., Houston, C. S., Fulco, C. S., Coates, G., Sutton, J. R. and Cymerman, A. (1988). Operation Everest. II: nutrition and body composition. J. Appl. Physiol., 65, 2545–51.CrossRefGoogle ScholarPubMed
Sartori, C., Allemann, Y., Duplain, H., et al. (2002). Salmeterol for the prevention of high-altitude pulmonary edema. New Engl. J. Med., 346, 1631–36.CrossRefGoogle ScholarPubMed
Sartori, C., Vollenweider, L., Loffler, B. M., et al. (1999). Exaggerated endothelin release in high-altitude pulmonary edema. Circulation, 99, 2665–8.CrossRefGoogle ScholarPubMed
Saunders, D. K. and Fedde, M. R. (1994). Exercise performance of birds. In Comparative Vertebrate Physiology: Phyletic Adaptations, ed. Jones, J. H.. San Diego: Academic Press. pp. 139–190.Google Scholar
Saunders, P. U., Telford, R. D., Pyne, D. B., et al. (2004). Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J. Appl. Physiol., 96, 931–7.CrossRefGoogle ScholarPubMed
Scherrer, U., Vollenweider, L., Delabays, A., et al. (1996). Inhaled nitric oxide for high-altitude pulmonary edema. New Engl. J. Med., 334, 624–9.CrossRefGoogle ScholarPubMed
Schmitt, P. M., Powell, F. L. and Hopkins, S. R. (2002). Ventilation-perfusion inequality during normoxic and hypoxic exercise in the emu. J. Appl. Physiol., 93, 1980–6.CrossRefGoogle ScholarPubMed
Schoene, R. B. (1982). Control of ventilation in climbers to extreme altitude. J. Appl. Physiol., 53, 886–96.CrossRefGoogle ScholarPubMed
Schoene, R., Swenson, E. and Hultgren, H. (2001). High altitude pulmonary edema. In High Altitude: an Exploration of Human Adaptation, ed. Hornbein, T. and Schoene, R.. New York: Marcel Dekker, pp. 777–814.Google Scholar
Scott, G. R. and Milsom, W. K. (2006). Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude. Respir. Physiol. Neurobiol. 154, 284–301.CrossRefGoogle ScholarPubMed
Scott, G. R. and Milsom, W. K. (2007). Control of breathing and adaptation to high altitude in the bar-headed goose. Am. J. Physiol., 293, R379–91.Google ScholarPubMed
Shams, H. and Scheid, P. (1989). Efficiency of parabronchial gas exchange in deep hypoxia: measurements in the resting duck. Respir. Physiol., 77, 135–46.CrossRefGoogle ScholarPubMed
Shams, H. and Scheid, P. (1993). Effects of hypobaria on parabronchial gas exchange in normoxic and hypoxic ducks. Respir. Physiol., 91, 155–63.CrossRefGoogle ScholarPubMed
Shams, H., Powell, F. L. and Hempleman, S. C. (1990). Effects of normobaric and hypobaric hypoxia on ventiltion and arterial blood gases in ducks. Respir. Physiol., 80, 163–70.CrossRefGoogle ScholarPubMed
Shelton, G., Jones, D. R., Milsom, W. K. and Fishman, A. P. (1986). Control of breathing in ectothermic vertebrates. Handbook of Physiology: The Respiratory System, Vol. 2, ed. Fisherman, A. P., Cherniack, N. S., Widdicombe, J. G. and Geiger, S. R.. Bethesda, MD: American Physiological Society, pp. 857–909.Google Scholar
Sillau, A. H., Cueva, S., Valenzuela, A. and Candela, E. (1976). O2 transport in the alpaca (Lama pacos) at sea level and 3,300 m. Respir. Physiol., 27, 147–55.CrossRefGoogle ScholarPubMed
Singh, I., Khanna, P. K., Srivastava, M. C., Lal, M., Roy, S. B. and Subramanyam, C. S. (1969). Acute mountain sickness. New Engl. J. Med., 280, 175–84.CrossRefGoogle ScholarPubMed
Smith, A. C., Abplanalp, H., Harwood, L. M. and Kelly, C. F. (1959). Poultry at high altitude. Calif. Agricult. 13, 8–9.Google Scholar
Snyder, L. R. G., Hayes, J. P. and Chappell, M. A. (1998). Alpha-chain hemoglobin polymorphisms are correlated with altitude in the deer mouse, Peromyscus maniculatus. Evolution, 42, 689–97.CrossRefGoogle Scholar
Storz, J. F., Sabatino, S. J., Hoffmann, F. G., et al. (2007). The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 3, e45.CrossRefGoogle ScholarPubMed
Sun, S., Oliver-Pickett, C., Ping, Y., et al. (1996). Breathing and brain blood flow during sleep in patients with chronic mountain sickness. J. Appl. Physiol., 81, 611–18.CrossRefGoogle ScholarPubMed
Sun, S. F., Droma, T. S., Zhang, J. G., et al. (1990). Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Respir. Physiol., 79, 151–61.CrossRefGoogle Scholar
Swan, L. W. (1970). Goose of the Himalayas. Nat. Hist., 79, 68–75.Google Scholar
Swenson, E. R., Maggiorini, M., Mongovin, S., et al. (2002). Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA, 287, 2228–35.CrossRefGoogle Scholar
Tenney, S. M. (1995). Functional differences in mammalian hemoglobin affinity for oxygen. In Hypoxia and the Brain, ed. Sutton, J. R., Houston, C. S. and Coates, M. D.. Burlington: Queen City Printers.Google Scholar
Tschop, M., Strasburger, C. J., Hartmann, G., Biollaz, J. and Bartsch, P. (1998). Raised leptin concentrations at high altitude associated with loss of appetite. Lancet, 352, 1119–20.CrossRefGoogle ScholarPubMed
Tucker, V. A. (1968). Respiratory physiology of house sparrows in relation to high-altitude flight. J. Exp. Biol., 48, 55–66.Google ScholarPubMed
Viswanathan, R., Jain, S. K., Subramanian, S., et al. (1969). Pulmonary edema of high altitude. II. Clinical, aerohemodynamic, and biochemical studies in a group with history of pulmonary edema of high altitude. Am Rev. Respir. Dis., 100, 334–41.CrossRefGoogle Scholar
Vitzthum, V. J. and Wiley, A. S. (2003). The proximate determinants of fertility in populations exposed to chronic hypoxia. High Alt. Med. Biol., 4, 125–39.CrossRefGoogle ScholarPubMed
Wagner, P. D. (1997). Insensitivity of VO2max to hemoglobin-P50 as sea level and altitude. Respir. Physiol., 107, 205–12.CrossRefGoogle ScholarPubMed
Wagner, P. D., Gale, G. E., Moon, R. E., Torre, B. J., Stolp, B. W. and Saltzman, H. A. (1986). Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J. Appl. Physiol., 61, 260–70.CrossRefGoogle ScholarPubMed
Wang, T. and Hicks, J. W. (1996). The interaction of pulmonary ventilation and the right-left shunt on arterial oxygen levels. J. Exp. Biol. 199, 2121–9.Google ScholarPubMed
Ward, M. P., Milledge, J. S. and West, J. B. (2000). High Altitude Medicine and Physiology. London: Arnold.Google Scholar
Weber, R. E. (1995). Hemoglobin adaptations to hypoxia and altitude-the phylogenetic perspective. In Hypoxia and the Brain, ed. Sutton, J. R., Houston, C. S. and Coates, M. D.. Burlington: Queen City Printers, pp. 31–44.Google Scholar
Weber, R. E. (2007). High-altitude adaptations in vertebrate hemoglobins. Respir. Physiol. Neurobiol., 158, 132–42.CrossRefGoogle ScholarPubMed
Weil, J. V., Cherniack, N. S. and Widdicombe, J. G. (1986). Ventilatory control at high altitude. In Handbook of Physiology The Respiratory System – Control of Breathing, Part II, ed. Cherniack, N. S. and Widdicombe, J. G.. Bethesda: American Physiological Society, pp. 703–28.Google Scholar
Weil, J. V., Byrne-Quinn, E., Sodal, I. E., Filley, G. F. and Grover, R. F. (1971). Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. J. Clin. Invest., 50, 186–95.CrossRefGoogle ScholarPubMed
Weinstein, Y., Bernstein, M. H., Bickler, P. E., et al. (1985). Blood respiratory properties in pigeons at high altitudes: effects of acclimation. Am. J. Physiol., 249, R765–75.Google ScholarPubMed
Weir, E. K., Tucker, A. and Reeves, J. T. (1974). The genetic factor influencing pulmonary hypertension in cattle at high altitude. Cardiovasc. Res., 8, 745–9.CrossRefGoogle ScholarPubMed
West, J. B. (1983). Climbing Mt. Everest without oxygen: analysis of maximal exercise during extreme hypoxia. Respir. Physiol., 52, 265–79.CrossRefGoogle ScholarPubMed
West, J. B. (1986). Highest inhabitants in the world. Nature, 324, 517.CrossRefGoogle Scholar
West, J. B. (1996). Prediction of barometric pressures at high altitude with the use of model atmospheres. J. Appl. Physiol., 81, 1850–4.CrossRefGoogle ScholarPubMed
West, J. B., Hackett, P. H., Maret, K. H., et al. (1983a). Pulmonary gas exchange on the summit of Mount Everest. J. Appl. Physiol., 55, 678–87.CrossRefGoogle ScholarPubMed
West, J. B., Watson, R. R. and Fu, Z. (2007). Major differences in the pulmonary circulation between birds and mammals. Respir. Physiol. Neurobiol. 157, 382–90.CrossRefGoogle ScholarPubMed
West, J. B., Lahiri, S., Maret, K. H., Peters, R. M., Jr. and Pizzo, C. J. (1983b). Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J. Appl. Physiol., 54, 1188–94.CrossRefGoogle ScholarPubMed
Will, D. H., Hicks, J. L., Card, C. S. and Alexander, A. F. (1975). Inherited susceptibility of cattle to high-altitude pulmonary hypertension. J. Appl. Physiol., 38, 491–4.CrossRefGoogle ScholarPubMed
Wiseman, C., Freer, L. and Hung, E. (2006). Physical and medical characteristics of successful and unsuccessful summiteers of Mount Everest in 2003. Wilderness Environ. Med., 17, 103–8.CrossRefGoogle ScholarPubMed
Wu, T., Li, S. and Ward, M. P. (2005). Tibetans at extreme altitude. Wilderness Environ. Med., 16, 47–54.CrossRefGoogle ScholarPubMed
Yagi, H., Yamada, H., Kobayashi, T. and Sekiguchi, M. (1990). Doppler assessment of pulmonary hypertension induced by hypoxic breathing in subjects susceptible to high altitude pulmonary edema. Am. Rev. Respir. Dis., 142, 796–801.CrossRefGoogle ScholarPubMed
Zhuang, J., Droma, T., Sutton, J. R., et al. (1996). Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir. Physiol., 103, 75–82.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×