Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T11:20:30.921Z Has data issue: false hasContentIssue false

14 - Nutrient cycling in tropical deciduous forests

Published online by Cambridge University Press:  07 September 2010

Harold A. Mooney
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Nutrient cycling processes have been well documented for tropical moist forest (Vitousek & Sanford, 1986; Bruijnzeel, 1991) but few comprehensive syntheses exist for tropical and subtropical dry and deciduous forests (Lugo & Murphy, 1986; Singh, 1989). Tropical dry forests are considered among the most threatened tropical ecosystems (Janzen, 1988) because they experience considerable exploitative pressure (Murphy & Lugo, 1986). In India, such pressures have been responsible for the transformation of vast areas of deciduous forest into savanna (Singh, 1989). The current rate of destruction of deciduous forest makes it imperative that we gain a thorough understanding of nutrient cycling in the remaining intact and successional forests. At present one of the principal agricultural practices relies on forest slash burning, resulting not only in recurrent nutrient losses thereby affecting the long-term productivity of the system but also substantially contributing to emissions of C and N to the atmosphere (Kauffman, Sanford & Sampaio, 1990; Maass, Chapter 17).

Seasonally dry forest production is controlled by the amount and distribution of annual rainfall (Martínez-Yrízar, Chapter 13), and this may explain why nutrients have not been considered in detail (Murphy & Lugo, 1986; Singh, 1989). For example in a recent review of forest nutrient cycling there was only one reference to tropical dry forest (Vogt, Grier & Vogt, 1986). If we assume that water availability alone limits primary production in tropical deciduous forest, we could conclude that nutrient limitation is not important. However, multiple resource limitation of plant growth is common in natural communities (Chapin et al., 1987).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×