Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-10T15:19:39.700Z Has data issue: false hasContentIssue false

14 - Parahippocampal region–dopaminergic neuron relationships in latent inhibition

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

Historically, the suggestion that dopaminergic (DAergic) neurons are involved in the latent inhibition (LI) phenomenon is linked to psychopharmacological studies carried out by two laboratories reporting an attenuation of LI responses in animals (rats) treated with the indirect DAergic agonist d-amphetamine, after chronic (Solomon, Crider, Winkelman et al.,1981; Weiner, Lubow & Feldon, 1981, 1984) or acute administration (Weiner, Lubow & Feldon, 1988). Involvement of DAergic neurons in LI was further supported by data showing that the LI attenuation induced by d-amphetamine was reversed by the concomitant administration of the neuroleptic chlorpromazine (Solomon et al., 1981), and by subsequent studies showing a facilitation of LI expression after administration of haloperidol (Weiner & Feldon, 1987; Weiner, Feldon & Katz, 1987), a well-known typical neuroleptic with a potent blockade action on DA receptors. Since these first studies, the reversal of the d-amphetamine-induced LI reduction by DAergic antagonists has been found in different LI paradigms after administration of several atypical neuroleptics, including olanzapine (Gosselin, Oberling & Di Scala, 1996) and clozapine (Trimble, Bell & King, 1998; Russig, Murphy & Feldon, 2002). In other respects, enhancement of LI expression has also been reported, with the atypical antipsychotics displaying a selective blockade action on D2 receptors such as sulpiride (Feldon & Weiner, 1991) or remoxipride (Trimble, Bell & King, 1997), whereas selective D1 antagonists were found to have no effect on LI phenomenon (Trimble, Bell & King, 2002).

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 319 - 341
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, S. E. (2000). Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Annals of the New York Academy of Sciences, 911, 275–292.CrossRefGoogle Scholar
Arnold, S. E., Ruscheinsky, D. D., & Han, L. Y. (1997). Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biological Psychiatry, 42, 639–647.CrossRefGoogle ScholarPubMed
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Disease, 176, 698–600.CrossRefGoogle Scholar
Besson, C., & Louilot, A. (1995). Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception. Neuroscience, 68, 963–968.CrossRefGoogle ScholarPubMed
Besson, C., & Louilot, A. (1997). Striatal dopaminergic changes depend on the attractive or aversive value of stimulus. Neuroreport, 8, 3523–3526.CrossRefGoogle ScholarPubMed
Blaha, C. D., Yang, C. R., Floresco, S. B., Barr, A. M., & Phillips, A. G. (1997). Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. European Journal of Neuroscience, 9, 902–911.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian conditioning. Psychological Bulletin, 114, 80–99.CrossRefGoogle Scholar
Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. Journal of Comparative Neurology, 338, 255–278.CrossRefGoogle ScholarPubMed
Brudzynski, S. M., & Gibson, C. J. (1997). Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats. Brain Research Bulletin, 42, 303–308.CrossRefGoogle ScholarPubMed
Cano-Cebrian, M. J., Zornoza-Sabina, T., Guerri, C., Polache, A., & Granero, L. (2003). Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Naunyn Schmiedebergs Archives of Pharmacology, 368, 324–327.CrossRefGoogle ScholarPubMed
Carlsson, A., Waters, N., Holm-Waters, S., et al. (2001). Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annual Review of Pharmacology and Toxicology, 41, 237–260.CrossRefGoogle ScholarPubMed
Coutureau, E., Galani, R., Gosselin, O., Majchrzak, M., & Di Scala, G. (1999). Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiology Learning and Memory, 72, 143–157.CrossRefGoogle ScholarPubMed
Diaz, J., Levesque, D., Griffon, N., et al. (1994). Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in nucleus accumbens. European Journal of Neuroscience, 6, 1384–1387.CrossRefGoogle ScholarPubMed
Diaz, J., Levesque, D., Lammers, C. H., et al. (1995). Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience, 65, 731–745.CrossRefGoogle ScholarPubMed
Divac, I., & Diemer, N. H. (1980). Prefrontal system in the rat visualized by means of labeled deoxyglucose – further evidence for functional heterogeneity of the neostriatum. Journal of Comparative Neurology, 190, 1–13.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., Knobbout, D. A., & Cools, A. R. (1997). The role of mesolimbic and nigrostriatal dopamine in latent inhibition as measured with the conditioned taste aversion paradigm. Psychopharmacology, 129, 112–120.CrossRefGoogle ScholarPubMed
Falkai, P., Schneider-Axmann, T., & Honer, W. G. (2000). Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biological Psychiatry, 47, 937–943.CrossRefGoogle ScholarPubMed
Feldon, J., Shofel, A., & Weiner, I. (1991). Latent inhibition is unaffected by direct dopamine agonists. Pharmacology, Biochemistry and Behavior, 38, 309–314.CrossRefGoogle ScholarPubMed
Feldon, J., & Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats' ability to ignore irrelevant stimuli. Biological Psychiatry, 29, 635–646.CrossRefGoogle ScholarPubMed
Finch, D. M. (1996). Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus, 6, 495–512.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Fuster, J. M. (1989). The Prefrontal Cortex, 2nd ed. New York: Raven Press.Google Scholar
Gonzalez-Mora, J. L., Guadalupe, T., Fumero, B., & Mas, M. (1991). Mathematical resolution of mixed in vivo voltammetry signals. Models, equipment, assessment by simultaneous microdialysis sampling. Journal of Neuroscience Methods, 39, 231–244.CrossRefGoogle ScholarPubMed
Gosselin, G., Oberling, P., & Di Scala, G. (1996). Antagonism of amphetamine-induced disruption of latent inhibition by the atypical antipsychotic olanzapine in rats. Behavioural Pharmacology, 7, 820–826.Google ScholarPubMed
Gray, N. S., Hemsley, D. R., & Gray, J. A. (1992). Abolition of latent inhibition in acute, but not chronic, schizophrenics. Neurology, Psychiatry and Brain Research, 1, 83–89.Google Scholar
Gray, N. S., Pickering, A. D., Hemsley, D. R., Dawling, S., & Gray, J. A. (1992). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology, 107, 425–430.CrossRefGoogle ScholarPubMed
Gray, N. S., Pilowsky, L. S., Gray, J. A., & Kerwin, R. W. (1995). Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPECT. Schizophrenia Research, 17, 95–107.CrossRefGoogle Scholar
Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain, 122, 593–624.CrossRefGoogle ScholarPubMed
Howland, J. G., MacKenzie, E. M., Yim, T. T., Taepavarapruk, P., & Phillips, A. G. (2004). Electrical stimulation of the hippocampus disrupts prepulse inhibition in rats: frequency- and site-dependent effects. Behavioral Brain Research, 152, 187–197.CrossRefGoogle ScholarPubMed
Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W., & Wohltmann, C. (1991). Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 41, 89–125.CrossRefGoogle ScholarPubMed
Jakob, H., & Beckmann, H. (1994). Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. Journal of Neural Transmission, 98, 83–106.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Hoeltzel, A., & Louilot, A. (2002). Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception. Neuroscience, 111, 315–323.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Hoeltzel, A., & Louilot, A. (2003). Differential involvement of dopamine in the anterior and posterior parts of the dorsal striatum in latent inhibition. Neuroscience, 118, 233–241.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Peterschmitt, Y., Hoeltzel, A., & Louilot, A. (2004). Influence of the entorhinal cortex on accumbal and striatal dopaminergic responses in a latent inhibition paradigm. Neuroscience, 128, 187–200.CrossRefGoogle Scholar
Jongen-Rêlo, A. L., Voorn, P., & Groenewegen, H. J. (1994). Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. European Journal of Neuroscience, 6, 1255–1264.CrossRefGoogle ScholarPubMed
Joyal, C. C., Laakso, M. P., Tiihonen, J., et al. (2002). A volumetric MRI study of the entorhinal cortex in first episode neuroleptic-naive schizophrenia. Biological Psychiatry, 51, 1005–1007.CrossRefGoogle ScholarPubMed
Killcross, A. S., & Robbins, T. W. (1993). Differential effects of intra-accumbens and systemic amphetamine on latent inhibition using an on-baseline, within-subject conditioned suppression paradigm. Psychopharmacology, 110, 479–489.CrossRefGoogle ScholarPubMed
Kraemer, P. J., Randall, C. K., & Carbary, T. J. (1991). Release from latent inhibition with delayed testing. Animal Learning & Behavior, 19, 139–145.CrossRefGoogle Scholar
Law, A. J., Weickert, C. S., Hyde, T. M., Kleinman, J. E., & Harrison, P. J. (2004). Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. American Journal of Psychiatry, 161, 1848–1855.CrossRefGoogle Scholar
Legault, M., Rompre, P. P., & Wise, R. A. (2000). Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. Journal of Neuroscience, 20, 1635–1642.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2007). Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice. Hippocampus, 17, 462–470.CrossRefGoogle ScholarPubMed
Ljungberg, T., & Ungerstedt, U. (1976). Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Experimental Neurology, 53, 585–600.CrossRefGoogle Scholar
Louilot, A., & Besson, C. (2000). Specificity of amygdalostriatal interactions in the involvement of mesencephalic dopaminergic neurons in affective perception. Neuroscience, 96, 73–82.CrossRefGoogle ScholarPubMed
Louilot, A., & Choulli, M. K. (1997). Asymmetrical increases in dopamine turn-over in the nucleus accumbens and lack of changes in locomotor responses following unilateral dopaminergic depletions in the entorhinal cortex. Brain Research, 778, 150–157.CrossRefGoogle ScholarPubMed
Louilot, A., & Moal, M. (1994). Lateralized interdependence between limbicotemporal and ventrostriatal dopaminergic transmission. Neuroscience, 59, 495–500.CrossRefGoogle ScholarPubMed
Louilot, A., Serrano, A., & D'Angio, M. (1987). A novel carbon fiber implantation assembly for cerebral voltammetric measurements in freely moving rats. Physiology and Behavior, 41, 227–231.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1989). Latent Inhibition and Conditioned Attention Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R. E., Kaplan, O., Abramovich, P., Rudnick, A., & Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophrenia Research, 45, 145–156.CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
Mackintosh, N. J. (1983) Conditioning and Associative Learning. Oxford: Oxford University Press.Google Scholar
Miller, R. R., & Matzel, L. D. (1988). The comparator hypothesis: A response rule for the expression of associations. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation, vol. 22, San Diego, CA: Academic Press, pp. 51–92.Google Scholar
Mitchell, S. N., Yee, B. K., Feldon, J., Gray, J. A., & Rawlins, J. N. (2000). Activation of the retrohippocampal region in the rat causes dopamine release in the nucleus accumbens: disruption by fornix section. European Journal of Pharmacology, 407, 131–138.CrossRefGoogle ScholarPubMed
Murphy, C. A., Pezze, M., Feldon, J., & Heidbreder, C. (2000). Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus. Neuroscience, 97, 469–477.CrossRefGoogle Scholar
Oswald, C. J., Yee, B. K., Rawlins, J. N., et al. (2002). The influence of selective lesions to components of the hippocampal system on the orienting [correction of orientating] response, habituation and latent inhibition. European Journal of Neuroscience, 15, 1983–1990.CrossRefGoogle ScholarPubMed
Peleg-Raibstein, D., & Feldon, J. (2006). Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology, 51, 947–957.CrossRefGoogle ScholarPubMed
Peterschmitt, Y., Hoeltzel, A., & Louilot, A. (2005). Striatal dopaminergic responses observed in latent inhibition are dependent on the hippocampal ventral subicular region. European Journal of Neuroscience, 22, 2059–2068.CrossRefGoogle ScholarPubMed
Peterschmitt, Y., Meyer, F., & Louilot, A. (2007). Neonatal functional blockade of the entorhinal cortex results in disruption of accumbal dopaminergic responses observed in latent inhibition paradigm in adult rats. European Journal of Neuroscience, 25, 2504–2513.CrossRefGoogle ScholarPubMed
Peterschmitt, Y., Meyer, F., & Louilot, A. (2008). Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition. Neuroscience, 154, 898–910.CrossRefGoogle ScholarPubMed
Petrulis, A., Alvarez, P., & Eichenbaum, H. (2005). Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum. Neuroscience, 130, 259–274.CrossRefGoogle ScholarPubMed
Pouzet, B., Zhang, W. N., Weiner, I., Feldon, J., & Yee, B. K. (2004). Latent inhibition is spared by N-methyl-D-aspartate (NMDA)-induced ventral hippocampal lesions, but is attenuated following local activation of the ventral hippocampus by intracerebral NMDA infusion. Neuroscience, 124, 183–194.CrossRefGoogle ScholarPubMed
Russig, H., Murphy, C. A., & Feldon, J. (2002). Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology, 26, 765–777.CrossRefGoogle ScholarPubMed
Shohamy, D., Allen, M. T., & Gluck, M. A. (2000). Dissociating entorhinal and hippocampal involvement in latent inhibition. Behavioral Neuroscience, 114, 867–874.CrossRefGoogle ScholarPubMed
Silbersweig, D. A., Stern, E., Frith, C., et al. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–179.CrossRefGoogle Scholar
Solomon, P. R., Crider, A., Winkelman, J. W., et al. (1981). Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biological Psychiatry, 16, 519–538.Google ScholarPubMed
Solomon, P. R., & Staton, D. M. (1982). Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Biological Psychiatry, 17, 743–756.Google ScholarPubMed
Sotty, F., Sandner, G., & Gosselin, O. (1996). Latent inhibition in conditioned emotional response: c-fos immunolabelling evidence for brain areas involved in the rat. Brain Research, 737, 243–254.CrossRefGoogle ScholarPubMed
Suzuki, W. A., & Eichenbaum, H. (2000). The neurophysiology of memory. Annals of the New York Academy of Sciences, 911, 175–191.CrossRefGoogle Scholar
Swerdlow, N. R., & Koob, G. F. (1987). DA, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behavioral Brain Science, 10, 197–245.CrossRefGoogle Scholar
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology, 169, 314–320.CrossRefGoogle ScholarPubMed
Taepavarapruk, P., Floresco, S. B., & Phillips, A. G. (2000). Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology, 151, 242–251.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1997). Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacology Biochemistry and Behavior, 56, 809–816.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1998). Enhancement of latent inhibition in the rat at a high dose of clozapine. Journal of Psychopharmacology, 12, 215–219.CrossRefGoogle Scholar
Trimble, K. M., Bell, R., & King, D. J. (2002). Effects of the selective dopamine D(1) antagonists NNC 01–0112 and SCH 39166 on latent inhibition in the rat. Physiology and Behavior, 77, 115–123.CrossRefGoogle ScholarPubMed
Troncoso, A. C., Osaki, M. Y., Mason, S., Borelli, K. G., & Brandão, M. L. (2003). Apomorphine enhances conditioned responses induced by aversive stimulation of the inferior colliculus. Neuropsychopharmacology, 28, 284–291.CrossRefGoogle ScholarPubMed
Wagner, A. R. (1976). Priming in STM: An information processing mechanism for self-generated or retrieval-generated depression in performance. In Tighe, T. & Leaton, R. N. (Eds.), Habituation: Perspectives from Child Development, Animal Behavior, and Neurophysiology. Hillsdale, NJ: Lawrence Erlbaum, pp. 95–128.Google Scholar
Weiner, I. (1990). The neural substrates of latent inhibition. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1987). Facilitation of latent inhibition by haloperidol. Psychopharmacology, 91, 248–253.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1997). The switching model of latent inhibition: an update of neural substrates. Behavioral Brain Research, 88,11–25.CrossRefGoogle ScholarPubMed
Weiner, I., Feldon, J., & Katz, Y. (1987). Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacology, Biochemistry and Behavior, 26, 241–246.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1981). Chronic amphetamine and latent inhibition. Behavioral Brain Research, 2, 285–286.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology, 83, 194–199.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry and Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Wright, C. I., & Groenewegen, H. J. (1995). Patterns of convergence and segregation in the medial nucleus accumbens of the rat: relationships of prefrontal cortical, midline thalamic, and basal amygdaloid afferents. Journal of Comparative Neurology, 361, 383–403.CrossRefGoogle ScholarPubMed
Young, A. M. J., Joseph, M. H., & Gray, J. A. (1993). Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience, 54, 5–9.CrossRefGoogle ScholarPubMed
Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the accumbens part of the ventral striatum. Neuroscience, 50, 751–767.CrossRefGoogle ScholarPubMed
Zahm, D. S., & Heimer, L. (1993). Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. Journal of Comparative Neurology, 327, 220–232.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×