Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T17:53:20.230Z Has data issue: false hasContentIssue false

13 - The pharmacology of latent inhibition and its relevance to schizophrenia

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

Latent inhibition refers to the observation that under specific conditions, nonreinforced preexposure (PE) to a stimulus retards the efficacy with which this stimulus is conditioned when paired with reinforcement, compared to a nonpreexposed (NPE) stimulus. The pharmacology of LI has been almost exclusively associated with the use of LI as an animal model of schizophrenia, and therefore largely overlaps the pharmacology of schizophrenia.

As detailed in our chapter on neural substrates of LI, the widely held notion that nonreinforced stimulus preexposure reduces attention to or salience of stimuli has served to link LI to attentional processing in schizophrenia. Specifically, because schizophrenia is characterized by an inability to filter out, or ignore, irrelevant or unimportant stimuli, abnormal LI was proposed as a tool for modeling deficient attention in schizophrenia (Solomon, Crider, Winkelman et al.,1981; Weiner, Lubow, & Feldon, 1981, 1984, 1988). Here we will focus on our use of LI for the development of pharmacological animal models related to schizophrenia and the identification of viable antipsychotic/anti-schizophrenia medications. Based on our initial pharmacological data, we adopted in our pharmacological investigations a view of LI that distinguished between the acquisition of LI (learning to ignore the nonreinforced stimulus in preexposure) and the expression of LI (subsequent expression of this learning in conditioning) (Weiner, Feldon, & Katz, 1987; Weiner et al., 1984, 1988). This view of LI has been elaborated in the switching model of LI (Weiner, 1990, 2003; Weiner & Feldon, 1997), and has guided our use of LI for modeling schizophrenia.

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 276 - 318
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A., Gil, R., Krystal, J., et al. (1998). Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. American Journal of Psychiatry, 155, 761–767.Google Scholar
Aguado, L., San Antonio, A., Perez, L., del Valle, R., & Gomez, J. (1994). Effects of the NMDA receptor antagonist ketamine on flavor memory: conditioned aversion, latent inhibition, and habituation of neophobia. Behavioral and Neural Biology, 61, 271–281.CrossRefGoogle ScholarPubMed
Andersen, M. B., Werge, T., & Fink-Jensen, A. (2007). The acetylcholinesterase inhibitor galantamine inhibits d-amphetamine-induced psychotic-like behavior in Cebus monkeys. The Journal of Pharmacology and Experimental Therapeutics, 321, 1179–1182.CrossRefGoogle ScholarPubMed
Angrist, B., Peselow, E., Rubinstein, M., Corwin, J., & Rotrosen, J. (1982). Partial improvement in negative schizophrenic symptoms after amphetamine. Psychopharmacology (Berl.), 78, 128–130.CrossRefGoogle ScholarPubMed
Arnt, J., & Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 18, 63–101.CrossRefGoogle Scholar
Bakshi, V. P., Swerdlow, N. R., & Geyer, M. A. (1994). Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. The Journal of Pharmacology and Experimental Therapeutics, 271, 787–794.Google ScholarPubMed
Barak, S., Arad, M., Levie, A., et al. (2009). Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia. Neuropsychopharmacology, 34, 1753–1763.CrossRefGoogle ScholarPubMed
Barak, S., & Weiner, I. (2007). Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology, 32, 989–999.CrossRefGoogle ScholarPubMed
Barak, S., & Weiner, I. (2009). Towards an animal model of an antipsychotic drug-resistant cognitive impairment in schizophrenia: scopolamine induces abnormally persistent latent inhibition, which can be reversed by cognitive enhancers but not by antipsychotic drugs. The International Journal of Neuropsychopharmacology, 12, 227–241.CrossRefGoogle Scholar
Barak, S., & Weiner, I. (2010). Differential role of muscarinic transmission within the entorhinal cortex and basolateral amygdala in the processing of irrelevant stimuli. Neuropsychopharmacology, Jan 13. [Epub ahead of print].CrossRefGoogle ScholarPubMed
Barrett, S. L., Bell, R., Watson, D., & King, D. J. (2004). Effects of amisulpride, risperidone and chlorpromazine on auditory and visual latent inhibition, prepulse inhibition, executive function and eye movements in healthy volunteers. Journal of Psychopharmacology, 18, 156–172.CrossRefGoogle ScholarPubMed
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988a). Differential performance of acute and chronic schizophrenics in a latent inhibition task. The Journal of Nervous and Mental Disease, 176, 598–606.CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988b). Latent inhibition and ‘psychotic proneness’ in normal subjects. Personality and Individual Differences, 9, 777–783.CrossRefGoogle Scholar
Bernstein, H. G., Bogerts, B., & Keilhoff, G. (2005). The many faces of nitric oxide in schizophrenia. A review. Schizophrenia Research, 78, 69–86.CrossRefGoogle ScholarPubMed
Bethus, I., Muscat, R., & Goodall, G. (2006). Dopamine manipulations limited to preexposure are sufficient to modulate latent inhibition. Behavioral Neuroscience, 120, 554–562.CrossRefGoogle ScholarPubMed
Bianchetti, A., Ranieri, P., Margiotta, A., & Trabucchi, M. (2006). Pharmacological treatment of Alzheimer's disease. Aging Clinical and Experimental Research 18, 158–162.CrossRefGoogle ScholarPubMed
Biton, B., Bergis, O. E., Galli, F., et al. (2007). SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology, 32, 1–16.CrossRefGoogle ScholarPubMed
Black, M. D., Selk, D. E., Hitchcock, J. M., Wettstein, J. G., & Sorensen, S. M. (1999). On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology, 38, 1299–1306.CrossRefGoogle ScholarPubMed
Black, M. D., Simmonds, J., Senyah, Y., & Wettstein, J. G. (2002). Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology, 42, 414–420.CrossRefGoogle ScholarPubMed
Black, M. D., Varty, G. B., Arad, M., et al. (2009). Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl.), 202, 385–396.CrossRefGoogle ScholarPubMed
Bleuler, M. (1911). Dementia Praecox or the Group of Schizophrenias. New York: International Universities Press.Google Scholar
Bolshakov, K. V., Gmiro, V. E., Tikhonov, D. B., & Magazanik, L. G. (2003). Determinants of trapping block of N-methyl-d-aspartate receptor channels. Journal of Neurochemistry, 87, 56–65.CrossRefGoogle ScholarPubMed
Boulay, D., Pichat, P., Dargazanli, G., et al. (2008). Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacology, Biochemistry, and Behavior, 91, 47–58.CrossRefGoogle Scholar
Braunstein-Bercovitz, H., & Lubow, R. E. (1998). Are high-schizotypal normal participants distractible or limited in attentional resources? A study of latent inhibition as a function of masking task load and schizotypy level. Journal of Abnormal Psychology, 107, 659–670.CrossRefGoogle ScholarPubMed
Breier, A., & Berg, P. H. (1999). The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome. Biological Psychiatry, 46, 361–364.CrossRefGoogle ScholarPubMed
Breier, A., Su, T. P., Saunders, R., et al. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences of the United States of America, 94, 2569–2574.CrossRefGoogle ScholarPubMed
Broen, W. E. (1968). Schizophrenia: Research and Theory. New York: Academic Press.Google Scholar
Broersen, L. M., Feldon, J., & Weiner, I. (1999). Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience, 94, 39–46.CrossRefGoogle ScholarPubMed
Brousseau, G., Rourke, B. P., & Burke, B. (2007). Acetylcholinesterase inhibitors, neuropsychiatric symptoms, and Alzheimer's disease subtypes: an alternate hypothesis to global cognitive enhancement. Experimental and Clinical Psychopharmacology, 15, 546–554.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Javitt, D. C., Marder, S. R., et al. (2007). The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. American Journal of Psychiatry, 164, 1593–1602.CrossRefGoogle ScholarPubMed
Bymaster, F. P., Felder, C., Ahmed, S., & McKinzie, D. (2002). Muscarinic receptors as a target for drugs treating schizophrenia. Current Drug Targets. CNS and Neurological Disorders, 1, 163–181.CrossRefGoogle ScholarPubMed
Carlsson, A., Waters, N., & Carlsson, M. L. (1999). Neurotransmitter interactions in schizophrenia – therapeutic implications. Biological Psychiatry, 46, 1388–1395.CrossRefGoogle ScholarPubMed
Carlsson, M., & Carlsson, A. (1990). Schizophrenia: a subcortical neurotransmitter imbalance syndrome?Schizophrenia Bulletin, 16, 425–432.CrossRefGoogle ScholarPubMed
Carnicella, S., Pain, L., & Oberling, P. (2005). Cholinergic effects on fear conditioning I: the degraded contingency effect is disrupted by atropine but reinstated by physostigmine. Psychopharmacology (Berl.), 178, 524–532.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Heinrichs, D. W., & Alphs, L. D. (1985). Treatment of negative symptoms. Schizophrenia Bulletin, 11, 440–452.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Heinrichs, D. W., & Wagman, A. M. (1988). Deficit and nondeficit forms of schizophrenia: the concept. American Journal of Psychiatry, 145, 578–583.Google Scholar
Carpenter, W. T., & Koenig, J. I. (2008). The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology, 33, 2061–2079.CrossRefGoogle ScholarPubMed
Cassaday, H. F., Hodges, H., & Gray, J. A. (1993). The effects of ritanserin, RU 24969 and 8-OH-DPAT on latent inhibition in the rat. Psychopharmacology, 7, 63–71.CrossRefGoogle ScholarPubMed
Chagas-Martinich, L., Carey, R. J., & Carrera, M. P. (2007). 7-OH-DPAT effects on latent inhibition: low dose facilitation but high dose blockade: Implications for dopamine receptor involvement in attentional processes. Pharmacology, Biochemistry, and Behavior, 86, 441–448.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W., & Sahakian, B. J. (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioral Reviews, 29, 399–419.CrossRefGoogle ScholarPubMed
Chang, T., Meyer, U., Feldon, J., & Yee, B. K. (2007). Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice. Psychopharmacology (Berl.), 191, 211–221.CrossRefGoogle ScholarPubMed
Chen, K. C., Baxter, M. G., & Rodefer, J. S. (2004). Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. The European Journal of Neuroscience, 20, 1081–1088.CrossRefGoogle ScholarPubMed
Clarke, L. A., Cassidy, C. W., Catalano, G., Catalano, M. C., & Carroll, K. M. (2004). Psychosis induced by smoking cessation clinic administered anticholinergic overload. Annals of Clinical Psychiatry 16, 171–175.CrossRefGoogle ScholarPubMed
Cohen, E., Sereni, N., Kaplan, O., et al. (2004). The relation between latent inhibition and symptom-types in young schizophrenics. Behavioural Brain Research, 149, 113–122.CrossRefGoogle ScholarPubMed
Crider, A. (1997). Perseveration in schizophrenia. Schizophrenia Bulletin, 23, 3–74.CrossRefGoogle Scholar
Csernansky, J. G., Martin, M., Shah, R., et al. (2005). Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacology, 30, 2135–2143.CrossRefGoogle ScholarPubMed
Dall'Olio, R., & Gandolfi, O. (1993). The NMDA positive modulator D-cycloserine potentiates the neuroleptic activity of D1 and D2 dopamine receptor blockers in the rat. Psychopharmacology (Berl.), 110, 165–168.CrossRefGoogle ScholarPubMed
Dao-Castellana, M. H., Paillere-Martinot, M. L., Hantraye, P., et al. (1997). Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophrenia Research, 23, 167–174.CrossRefGoogle ScholarPubMed
Levie, A., & Weiner, I. (2007a). Behavioral and pharmacological changes after neonatal nitric oxide inhibition: a model of negative symptoms. European Neuropsychopharmacology, 17(supp 4), S262.CrossRefGoogle Scholar
Levie, A., & Weiner, I. (2007b). Perseverative behavior after neonatal nitric oxide blockade is alleviated following enhanced NMDA but not DA function. European Neuropsychopharmacology, 17(supp 1), S60.CrossRefGoogle Scholar
Della Casa, V., Hofer, I., Weiner, I., & Feldon, J. (1999). Effects of smoking status and schizotypy on latent inhibition. Journal of Psychopharmacology, 13, 45–57.CrossRefGoogle ScholarPubMed
Depoortere, R., Dargazanli, G., Estenne-Bouhtou, G., et al. (2005). Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology, 30, 1963–1985.CrossRefGoogle ScholarPubMed
Dunn, L. A., Atwater, G. E., & Kilts, C. D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl.), 112, 315–323.CrossRefGoogle ScholarPubMed
Escobar, M., Oberling, P., & Miller, R. R. (2002). Associative deficit accounts of disrupted latent inhibition and blocking in schizophrenia. Neuroscience and Biobehavioral Reviews, 26, 203–216.CrossRefGoogle Scholar
Everitt, B. J., & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48, 649–684.CrossRefGoogle ScholarPubMed
Feldon, J., Shofel, A., & Weiner, I. (1991). Latent inhibition is unaffected by direct dopamine agonists. Pharmacology, Biochemistry, and Behavior, 38, 309–314.CrossRefGoogle ScholarPubMed
Feldon, J., & Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats' ability to ignore irrelevant stimuli. Biological Psychiatry, 29, 635–646.CrossRefGoogle ScholarPubMed
Friedman, J. I. (2004). Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl.), 174, 45–53.CrossRefGoogle ScholarPubMed
Frith, C. D. (1979). Consciousness, information processing and schizophrenia. The British Journal of Psychiatry, 134, 225–235.CrossRefGoogle Scholar
Gaisler-Salomon, I., Diamant, L., Rubin, C., & Weiner, I. (2008). Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology (Berl.), 196, 255–267.CrossRefGoogle ScholarPubMed
Gaisler-Salomon, I., & Weiner, I. (2003). Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl.), 166, 333–342.CrossRefGoogle Scholar
Gal, G., Barnea, Y., Biran, L., et al. (2009). Enhancement of latent inhibition in patients with chronic schizophrenia. Behavioural Brain Research, 197, 1–8.CrossRefGoogle ScholarPubMed
Goff, D. C., Herz, L., Posever, T., et al. (2005). A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl.), 179, 144–150.CrossRefGoogle ScholarPubMed
Goff, D. C., Tsai, G., Manoach, D. S., & Coyle, J. T. (1995). Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. American Journal of Psychiatry, 152, 1213–1215.Google Scholar
Gopel, C., Laufer, C., & Marcus, A. (2002). Three cases of angel's trumpet tea-induced psychosis in adolescent substance abusers. Nordic Journal of Psychiatry, 56, 49–52.CrossRefGoogle ScholarPubMed
Gosselin, G., Oberling, P., & Di Scala, G. (1996). Antagonism of amphetamine-induced disruption of latent inhibition by the atypical antipsychotic olanzapine in rats. Behavioural Pharmacology, 7, 820–826.Google ScholarPubMed
Goto, Y., & Grace, A. A. (2007). The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. International Review of Neurobiology. 78C, 41–68.CrossRefGoogle Scholar
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24.CrossRefGoogle ScholarPubMed
Gracey, D. J., Bell, R., & King, D. J. (2002). Differential effects of the CCKA receptor ligands PD-140,548 and A-71623 on latent inhibition in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26, 497–504.CrossRefGoogle ScholarPubMed
Granacher, R. P., & Baldessarini, R. J. (1975). Physostigmine. Its use in acute anticholinergic syndrome with antidepressant and antiparkinson drugs. Archives of General Psychiatry, 32, 375–380.CrossRefGoogle ScholarPubMed
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R., & Smith, A. D. (1991). The neuropsychology of schizophrenia. Behavioral and Brain Sciences, 14, 1–20.CrossRefGoogle Scholar
Gray, J. A., Moran, P. M., Grigoryan, G., et al. (1997). Latent inhibition: the nucleus accumbens connection revisited. Behavioural Brain Research, 88, 27–34.CrossRefGoogle ScholarPubMed
Gray, J. A., & Roth, B. L. (2007). The pipeline and future of drug development in schizophrenia. Molecular Psychiatry, 12, 904–922.CrossRefGoogle Scholar
Gray, N. S., Hemsley, D. R., & Gray, J. A. (1992). Abolition of latent inhibition in acute, but not chronic schizophrenics. Neurology Psychiatry and Brain Research, 1, 83–89.Google Scholar
Gray, N. S., Pickering, A. D., Hemsley, D. R., Dawling, S., & Gray, J. A. (1992). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl.), 107, 425–430.CrossRefGoogle ScholarPubMed
Gray, N. S., Pilowsky, L. S., Gray, J. A., & Kerwin, R. W. (1995). Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophrenia Research, 17, 95–107.CrossRefGoogle ScholarPubMed
Guillin, O., Abi-Dargham, A., & Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. International Review of Neurobiology, 78, 1–39.CrossRefGoogle Scholar
Hajos, M., Hurst, R. S., Hoffmann, W. E., et al. (2005). The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. The Journal of Pharmacology and Experimental Therapeutics, 312, 1213–1222.CrossRefGoogle ScholarPubMed
Harsing, L. G., Gacsalyi, I., Szabo, G., et al. (2003). The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacology, Biochemistry, and Behavior, 74, 811–825.CrossRefGoogle ScholarPubMed
Harvey, P. D., Rabinowitz, J., Eerdekens, M., & Davidson, M. (2005). Treatment of cognitive impairment in early psychosis: a comparison of risperidone and haloperidol in a large long-term trial. The American Journal of Psychiatry, 162, 1888–1895.CrossRefGoogle Scholar
Hashimoto, K., Koike, K., Shimizu, E., & Iyo, M. (2005). Alpha7 nicotinic receptor agonists as potential therapeutic drugs for schizophrenia. Current Medicinal Chemistry Central Nervous System Agents, 5, 171.CrossRefGoogle Scholar
Hasselmo, M. E., & McGaughy, J. (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Progress in Brain Research, 145, 207–231.CrossRefGoogle ScholarPubMed
Hietala, J., Syvalahti, E., Vilkman, H., et al. (1999). Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophrenia Research, 35, 41–50.CrossRefGoogle ScholarPubMed
Hoehn-Saric, R., McLeod, D. R., & Glowa, J. R. (1991). The effects of NMDA receptor blockade on the acquisition of a conditioned emotional response. Biological Psychiatry, 30, 170–176.CrossRefGoogle ScholarPubMed
Hohnadel, E., Bouchard, K., & Terry, A. V.. (2007). Galantamine and donepezil attenuate pharmacologically induced deficits in prepulse inhibition in rats. Neuropharmacology, 52, 542–551.CrossRefGoogle ScholarPubMed
Hyde, T. M., & Crook, J. M. (2001). Cholinergic systems and schizophrenia: primary pathology or epiphenomena?Journal of Chemical Neuroanatomy, 22, 53–63.CrossRefGoogle ScholarPubMed
Ichikawa, J., Chung, Y. C., Li, Z., Dai, J., & Meltzer, H. Y. (2002). Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Research, 958, 176–184.CrossRefGoogle ScholarPubMed
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research. Brain Research Reviews, 31, 6–41.CrossRefGoogle ScholarPubMed
Javitt, D. C. (2002). Glycine modulators in schizophrenia. Current Opinion in Investigational Drugs, 3, 1067–1072.Google Scholar
Javitt, D. C. (2008). Glycine transport inhibitors and the treatment of schizophrenia. Biological Psychiatry, 63, 6–8.CrossRefGoogle ScholarPubMed
Javitt, D. C., Balla, A., Sershen, H., & Lajtha, A. (1999). Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biological Psychiatry, 45, 668–679.CrossRefGoogle ScholarPubMed
Javitt, D. C., Sershen, H., Hashim, A., & Lajtha, A. (1997). Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology, 17, 202–204.CrossRefGoogle ScholarPubMed
Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry, 148, 1301–1308.Google ScholarPubMed
Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20, 201–225.CrossRefGoogle ScholarPubMed
Jentsch, J. D., & Taylor, J. R. (2001). Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology, 24, 66–74.CrossRefGoogle ScholarPubMed
Jones, C. K., Eberle, E. L., Shaw, D. B., McKinzie, D. L., & Shannon, H. E. (2005). Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. The Journal of Pharmacology and Experimental Therapeutics, 312, 1055–1063.CrossRefGoogle ScholarPubMed
Jones, C. K., & Shannon, H. E. (2000). Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex. The Journal of Pharmacology and Experimental Therapeutics, 294, 1017–1023.Google ScholarPubMed
Joseph, M. H., Peters, S. L., & Gray, J. A. (1993). Nicotine blocks latent inhibition in rats: evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than pre-exposure. Psychopharmacology (Berl.), 110, 187–192.CrossRefGoogle ScholarPubMed
Joseph, M. H., Peters, S. L., Moran, P. M., et al. (2000). Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience, 101, 921–930.CrossRefGoogle ScholarPubMed
Kane, J. M. (1995). Current problems with the pharmacotherapy of schizophrenia. Clinical Neuropharmacology. 18, S154–S161.CrossRefGoogle Scholar
Kaplan, O., Dar, R., Rosenthal, L., et al. (2006). Obsessive-compulsive disorder patients display enhanced latent inhibition on a visual search task. Behaviour Research and Therapy, 44, 1137–1145.CrossRefGoogle ScholarPubMed
Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160, 13–23.CrossRefGoogle Scholar
Karan, R. S., Ravishankar, P., & Pandhi, P. (2000). Effect of muscarinic receptor agonists on animal models of psychosis. Methods and Findings in Experimental and Clinical Pharmacology, 22, 169–172.Google ScholarPubMed
Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: a characteristic disorder with prefrontal lobe lesions?Neuropsychologia, 30, 1011–1016.CrossRefGoogle ScholarPubMed
Kato, K., Shishido, T., Ono, M., et al. (2001). Glycine reduces novelty- and methamphetamine-induced locomotor activity in neonatal ventral hippocampal damaged rats. Neuropsychopharmacology, 24, 330–332.CrossRefGoogle ScholarPubMed
Killcross, A. S., Dickinson, A., & Robbins, T. W. (1994a). Amphetamine-induced disruptions of latent inhibition are reinforcer mediated: implications for animal models of schizophrenic attentional dysfunction. Psychopharmacology (Berl.), 115, 185–195.CrossRefGoogle ScholarPubMed
Killcross, A. S., Dickinson, A., & Robbins, T. W. (1994b). Effects of the neuroleptic alpha-flupenthixol on latent inhibition in aversively- and appetitively-motivated paradigms: evidence for dopamine-reinforcer interactions. Psychopharmacology (Berl.), 115, 196–205.CrossRefGoogle ScholarPubMed
Killcross, A. S., & Robbins, T. W. (1993). Differential effects of intra-accumbens and systemic amphetamine on latent inhibition using an on-baseline, within-subject conditioned suppression paradigm. Psychopharmacology (Berl.), 110, 479–489.CrossRefGoogle ScholarPubMed
Kinon, B. J., & Lieberman, J. A. (1996). Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl.), 124, 2–34.CrossRefGoogle ScholarPubMed
Krystal, J. H., Bennett, A., Abi-Saab, D., et al. (2000). Dissociation of ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA receptor contributions to executive cognitive functions. Biological Psychiatry, 47, 137–143.CrossRefGoogle ScholarPubMed
Krystal, J. H., D'Souza, D. C., Mathalon, D., et al. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl.), 169, 215–233.CrossRefGoogle Scholar
Kumari, V., Aasen, I., Ffytche, D., Williams, S. C., & Sharma, T. (2006). Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind fMRI study. Neuroimage, 29, 545–556.CrossRefGoogle ScholarPubMed
Labrie, V., Lipina, T., & Roder, J. C. (2008). Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berl.), 200, 217–230.CrossRefGoogle ScholarPubMed
Lahti, A. C., Koffel, B., LaPorte, D., & Tamminga, C. A. (1995). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology, 13, 9–19.CrossRefGoogle ScholarPubMed
Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., & Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biological Psychiatry, 46, 56–72.CrossRefGoogle ScholarPubMed
Laruelle, M., Abi-Dargham, A., Dyck, C. H., et al. (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences of the United States of America, 93, 9235–9240.CrossRefGoogle ScholarPubMed
Lee, S. W., Lee, J. G., Lee, B. J., & Kim, Y. H. (2007). A 12-week, double-blind, placebo-controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. International Clinical Psychopharmacology, 22, 63–68.CrossRefGoogle ScholarPubMed
Levin, E. D., Bettegowda, C., Blosser, J., & Gordon, J. (1999). AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats. Behavioural Pharmacology, 10, 675–680.CrossRefGoogle ScholarPubMed
Leysen, J. E., Janssen, P. M., Schotte, A., Luyten, W. H., & Megens, A. A. (1993). Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology (Berl.), 112(1 Suppl), S40–54.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Tollefson, G. D., Charles, C., et al. (2005). Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of General Psychiatry, 62, 361–370.CrossRefGoogle ScholarPubMed
Lipina, T., Labrie, V., Weiner, I., & Roder, J. (2005). Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl.), 179, 54–67.CrossRefGoogle ScholarPubMed
Lipp, O. V., & Vaitl, D. (1992). Latent inhibition in human Pavlovian differential conditioning – effect of addiitional stimulation after preexposure and relation to schizotypal traits. Personality and Individual Differences, 13, 1003–1012.CrossRefGoogle Scholar
Lubow, R. E. (2005). Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophrenia Bulletin, 31, 139–153.CrossRefGoogle Scholar
Lubow, R. E., & Casa, G. (2002). Latent inhibition as a function of schizotypality and gender: Implications for schizophrenia. Biological Psychiatry, 59, 69–86.CrossRefGoogle Scholar
Lubow, R. E., Dressler, R., & Kaplan, O. (1999). The effects of target and distractor familiarity on visual search in de novo Parkinson's disease patients: latent inhibition and novel pop-out. Neuropsychology, 13, 415–423.CrossRefGoogle ScholarPubMed
Lubow, R. E., Ingbergsachs, Y., Zalsteinorda, N., & Gewirtz, J. C. (1992). Latent inhibition in low and high “psychotic-prone” normal subjects. Personality and Individual Differences, 13, 563–572.CrossRefGoogle Scholar
Lubow, R. E., Kaplan, O., Abramovich, P., Rudnick, A., & Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophrenia Research, 45, 145–156.CrossRefGoogle ScholarPubMed
Lubow, R. E., Kaplan, O., & Casa, G. (2001). Performance on the visual search analog of latent inhibition is modulated by an interaction between schizotypy and gender. Schizophrenia Research, 52, 275–287.CrossRefGoogle ScholarPubMed
Lyon, M. (1991). Animal models of mania and schizophrenia. In Willner, P. (Ed.), Behavioral Models in Psychopharmacology: Theoretical, Industrial and Clinical Perspectives. Cambridge: Cambridge University Press, pp. 253–310.Google Scholar
Malhotra, A. K., Adler, C. M., Kennison, S. D., et al. (1997). Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biological Psychiatry, 42, 664–668.CrossRefGoogle ScholarPubMed
Malhotra, A. K., Pinals, D. A., Adler, C. M., et al. (1997). Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology, 17, 141–150.CrossRefGoogle ScholarPubMed
Marder, S. R., & Fenton, W. (2004). Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophrenia Research, 72, 5–9.CrossRefGoogle ScholarPubMed
Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T., & Conn, P. J. (1998). Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 11465–11470.CrossRefGoogle ScholarPubMed
Martin, L. F., Kem, W. R., & Freedman, R. (2004). Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl.) 174, 54–64.CrossRefGoogle ScholarPubMed
Masson, S., Avanzi, V., Troncoso, A. C., & Brandao, M. L. (2003). Effects of apomorphine and clozapine on conditioned freezing and latent inhibition. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 935–943.CrossRefGoogle ScholarPubMed
Mastropaolo, J., Rosse, R. B., & Deutsch, S. I. (2004). Anabasine, a selective nicotinic acetylcholine receptor agonist, antagonizes MK-801-elicited mouse popping behavior, an animal model of schizophrenia. Behavioural Brain Research, 153, 419–422.CrossRefGoogle ScholarPubMed
Mathur, A., Shandarin, A., LaViolette, S. R., Parker, J., & Yeomans, J. S. (1997). Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Research, 775, 144–155.CrossRefGoogle ScholarPubMed
McCartan, D., Bell, R., Green, J. F., et al. (2001). The differential effects of chlorpromazine and haloperidol on latent inhibition in healthy volunteers. Journal of Psychopharmacology, 15, 96–104.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., & Nash, J. F. (1991). Effects of antipsychotic drugs on serotonin receptors. Pharmacological Reviews, 43, 587–604.Google ScholarPubMed
Meltzer, H. Y., & Sumiyoshi, T. (2003). Atypical antipsychotic drugs improve cognition in schizophrenia. Biological Psychiatry, 53, 265–267; author reply 267–268.CrossRefGoogle ScholarPubMed
Millan, M. J. (2002). N-methyl-D-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Current Drug Targets. CNS and Neurological Disorders, 1, 191–213.CrossRefGoogle ScholarPubMed
Millan, M. J. (2005). N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl.), 179, 30–53.CrossRefGoogle ScholarPubMed
Millan, M. J., Brocco, M., Gobert, A., et al. (1999). Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. The European Journal of Neuroscience, 11, 4419–4432.CrossRefGoogle ScholarPubMed
Miyamoto, S., Duncan, G. E., Marx, C. E., & Lieberman, J. A. (2005). Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Molecular Psychiatry, 10, 79–104.CrossRefGoogle ScholarPubMed
Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. The Journal of Neuroscience, 17(8), 2921–2927.CrossRefGoogle ScholarPubMed
Moghaddam, B., & Jackson, M. E. (2003). Glutamatergic animal models of schizophrenia. Annals of the New York Academy of Sciences, 1003, 131–137.CrossRefGoogle ScholarPubMed
Moller, H. J. (2003). Management of the negative symptoms of schizophrenia: New treatment options. CNS Drugs, 17, 793–823.CrossRefGoogle ScholarPubMed
Moran, P. M., Fischer, T. R., Hitchcock, J. M., & Moser, P. C. (1996). Effects of clozapine on latent inhibition in the rat. Behavioural Pharmacology, 7, 42–48.CrossRefGoogle ScholarPubMed
Moser, P. C., Hitchcock, J. M., Lister, S., & Moran, P. M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Research. Brain Research Reviews, 33, 275–307.CrossRefGoogle ScholarPubMed
Murphy, C. A., Di Iorio, L., & Feldon, J. (2001). Effects of psychostimulant withdrawal on latent inhibition of conditioned active avoidance and prepulse inhibition of the acoustic startle response. Psychopharmacology (Berl.), 156, 155–164.CrossRefGoogle ScholarPubMed
Nogue, S., Sanz, P., Munne, P., & Torre, R. (1991). Acute scopolamine poisoning after sniffing adulterated cocaine. Drug and Alcohol Dependence, 27, 115–116.CrossRefGoogle ScholarPubMed
Noren, U., Bjorner, A., Sonesson, O., & Eriksson, L. (2006). Galantamine added to antipsychotic treatment in chronic schizophrenia: cognitive improvement?Schizophrenia Research, 85, 302–304.CrossRefGoogle ScholarPubMed
Ogura, C., Kishimoto, A., & Nakao, T. (1976). Clinical effect of L-dopa on schizophrenia. Current Therapeutic Research, Clinical and Experimental, 20, 308–318.Google ScholarPubMed
Ohno, M., & Watanabe, S. (1996). D-cycloserine, a glycine site agonist, reverses working memory failure by hippocampal muscarinic receptor blockade in rats. European Journal of Pharmacology, 318, 267–271.CrossRefGoogle ScholarPubMed
Olincy, A., Harris, J. G., Johnson, L. L., et al. (2006). Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Archives of General Psychiatry, 63, 630–638.CrossRefGoogle Scholar
Olincy, A., & Stevens, K. E. (2007). Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochemical Pharmacology, 74, 1192–1201.CrossRefGoogle ScholarPubMed
Palsson, E., Klamer, D., Wass, C., et al. (2005). The effects of phencyclidine on latent inhibition in taste aversion conditioning: differential effects of preexposure and conditioning. Behavioural Brain Research, 157, 139–146.CrossRefGoogle ScholarPubMed
Payne, R. W. (1966). The measurement and significance of overinclusive thinking and retardation in schizophrenic patients. In Hoch, P. & Zubin, J. (Eds.), Psychopathology of Schizophrenia. New York: Grune and Stratton.Google Scholar
Pennartz, C. M., Groenewegen, H. J., & Lopes da Silva, F. H. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Progress in Neurobiology, 42, 719–761.CrossRefGoogle ScholarPubMed
Perry, P. J., Wilding, D. C., & Juhl, R. P. (1978). Anticholinergic psychosis. American Journal of Hospital Pharmacy, 35, 725–728.Google ScholarPubMed
Peters, S. L., & Joseph, M. H. (1993). Haloperidol potentiation of latent inhibition in rats: evidence for a critical role at conditioning rather than pre-exposure. Behavioural Pharmacology, 4, 183–186.CrossRefGoogle ScholarPubMed
Pichat, P., Bergis, O. E., Terranova, J. P., et al. (2007). SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology, 32, 17–34.CrossRefGoogle ScholarPubMed
Powell, S. B., & Geyer, M. A. (2007). Overview of animal models of schizophrenia. Current Protocols in Neuroscience. Chapter 9, Unit 9, 24.CrossRefGoogle ScholarPubMed
Ragozzino, M. E., Jih, J., & Tzavos, A. (2002). Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Research, 953, 205–214.CrossRefGoogle ScholarPubMed
Ransom, R. W., & Deschenes, N. L. (1989). Glycine modulation of NMDA-evoked release of [3H]acetylcholine and [3H]dopamine from rat striatal slices. Neuroscience Letters, 96, 323–328.CrossRefGoogle Scholar
Rapin, I., & Katzman, R. (1998). Neurobiology of autism. Annals of Neurology, 43, 7–14.CrossRefGoogle ScholarPubMed
Rascle, C., Mazas, O., Vaiva, G., et al. (2001). Clinical features of latent inhibition in schizophrenia. Schizophrenia Research, 51, 149–161.CrossRefGoogle Scholar
Rezvani, A. H., & Levin, E. D. (2003). Nicotinic-glutamatergic interactions and attentional performance on an operant visual signal detection task in female rats. European Journal of Pharmacology, 465, 83–90.CrossRefGoogle ScholarPubMed
Robbins, T. W. (1991). Cognitive deficits in schizophrenia and Parkinson's disease – neural basis and the role of dopamine. In Willner, P. J. & Scheel-Kruger, J. (Eds.), The Mesolimbic Dopamine System – From Motivation to Action. Chichester: Wiley.Google Scholar
Robinson, G. B., Port, R. L., & Stillwell, E. G. (1993). Latent inhibition of the classically conditioned rabbit nictitating membrane response is unaffected by the NMDA antagonist MK-801. Psychobiology, 21, 120–124.Google Scholar
Rochford, J., Sen, A. P., & Quirion, R. (1996). Effect of nicotine and nicotinic receptor agonists on latent inhibition in the rat. The Journal of Pharmacology and Experimental Therapeutics, 277, 1267–1275.Google ScholarPubMed
Ruob, C., Elsner, J., Weiner, I., & Feldon, J. (1997). Amphetamine-induced disruption and haloperidol-induced potentiation of latent inhibition depend on the nature of the stimulus. Behavioural Brain Research, 88, 35–41.CrossRefGoogle ScholarPubMed
Russig, H., Kovacevic, A., Murphy, C. A., & Feldon, J. (2003). Haloperidol and clozapine antagonise amphetamine-induced disruption of latent inhibition of conditioned taste aversion. Psychopharmacology (Berl.), 170, 263–270.CrossRefGoogle ScholarPubMed
Russig, H., Murphy, C. A., & Feldon, J. (2002). Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology, 26, 765–777.CrossRefGoogle ScholarPubMed
Salgado, J. V., Hetem, L. A., Vidal, M., Graeff, F. G., Danion, J. M., & Sandner, G. (2000). Reduction of latent inhibition by D-amphetamine in a conditioned suppression paradigm in humans. Behavioural Brain Research, 117, 61–67.CrossRefGoogle Scholar
Sams-Dodd, F. (1996). Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behavioural Pharmacology, 7, 3–23.CrossRefGoogle ScholarPubMed
Sanfilipo, M., Wolkin, A., Angrist, B., et al. (1996). Amphetamine and negative symptoms of schizophrenia. Psychopharmacology (Berl.), 123, 211–214.CrossRefGoogle ScholarPubMed
Sarter, M., Bruno, J. P., & Givens, B. (2003). Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory?Neurobiology of Learning and Memory, 80, 245–256.CrossRefGoogle ScholarPubMed
Sarter, M., Nelson, C. L., & Bruno, J. P. (2005). Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophrenia Bulletin, 31, 117–138.CrossRefGoogle Scholar
Schotte, A., Janssen, P. F., Gommeren, W., et al. (1996). Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl.), 124, 57–73.CrossRefGoogle ScholarPubMed
Schubert, M. H., Young, K. A., & Hicks, P. B. (2006). Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biological Psychiatry, 60, 530–533.CrossRefGoogle ScholarPubMed
Shadach, E., Feldon, J., & Weiner, I. (1999). Clozapine-induced potentiation of latent inhibition is due to its action in the conditioning stage: implications for the mechanism of action of antipsychotic drugs. The International Journal of Neuropsychopharmacology, 2, 283–291.CrossRefGoogle ScholarPubMed
Shadach, E., Gaisler, I., Schiller, D., & Weiner, I. (2000). The latent inhibition model dissociates between clozapine, haloperidol, and ritanserin. Neuropsychopharmacology, 23, 151–161.CrossRefGoogle ScholarPubMed
Shakow, D. (1962). Segmental set. Archives of General Psychiatry, 6, 1–17.CrossRef
Shannon, H. E., & Peters, S. C. (1990). A comparison of the effects of cholinergic and dopaminergic agents on scopolamine-induced hyperactivity in mice. The Journal of Pharmacology and Experimental Therapeutics, 255, 549–553.Google ScholarPubMed
Shannon, H. E., Rasmussen, K., Bymaster, F. P., et al. (2000). Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophrenia Research, 42, 249–259.CrossRefGoogle Scholar
Sirvio, J., Ekonsalo, T., Riekkinen, P., Lahtinen, H., & Riekkinen, P.. (1992). D-cycloserine, a modulator of the N-methyl-D-aspartate receptor, improves spatial learning in rats treated with muscarinic antagonist. Neuroscience Letters, 146, 215–218.CrossRefGoogle ScholarPubMed
Smith, A., Li, M., Becker, S., & Kapur, S. (2006). Dopamine, prediction error and associative learning: a model-based account. Network, 17, 61–84.CrossRefGoogle ScholarPubMed
Soffie, M., & Lamberty, Y. (1987). Scopolamine disrupts visual reversal without affecting the first discrimination. Physiology and Behavior, 40, 263–265.CrossRefGoogle ScholarPubMed
Solomon, P. R., Crider, A., Winkelman, J. W., et al. (1981). Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biological Psychiatry, 16, 519–537.Google ScholarPubMed
Stanhope, K. J., Mirza, N. R., Bickerdike, M. J., et al. (2001). The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. The Journal of Pharmacology and Experimental Therapeutics, 299, 782–792.Google ScholarPubMed
Stone, W. S., Rudd, R. J., & Gold, P. E. (1990). Glucose and physostigmine effects on morphine- and amphetamine-induced increases in locomotor activity in mice. Behavioral and Neural Biology, 54, 146–155.CrossRefGoogle ScholarPubMed
Svensson, T. H. (2000). Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Research. Brain Research Reviews, 31, 320–329.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Braff, D. L., Hartston, H., Perry, W., & Geyer, M. A. (1996). Latent inhibition in schizophrenia. Schizophrenia Research, 20, 91–103.CrossRefGoogle Scholar
Swerdlow, N. R., Hartston, H. J., & Hartman, P. L. (1999). Enhanced visual latent inhibition in obsessive-compulsive disorder. Biological Psychiatry, 45, 482–488.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., & Koob, G. F. (1987). Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behavioral and Brain Sciences, 10, 197–245.CrossRefGoogle Scholar
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology (Berl.), 169, 314–320.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2005). Intact visual latent inhibition in schizophrenia patients in a within-subject paradigm. Schizophrenia Research, 72, 169–183.CrossRefGoogle Scholar
Tamminga, C. A. (1998). Schizophrenia and glutamatergic transmission. Critical Reviews in Neurobiology, 12, 21–36.CrossRefGoogle ScholarPubMed
Tanii, Y., Nishikawa, T., Hashimoto, A., & Takahashi, K. (1994). Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. The Journal of Pharmacology and Experimental Therapeutics, 269, 1040–1048.Google ScholarPubMed
Tenn, C. C., Fletcher, P. J., & Kapur, S. (2005a). A putative animal model of the “prodromal” state of schizophrenia. Biological Psychiatry, 57, 586–593.CrossRefGoogle ScholarPubMed
Tenn, C. C., Kapur, S., & Fletcher, P. J. (2005b). Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology (Berl.), 180, 366–376.CrossRefGoogle Scholar
Thornton, J. C., Dawe, S., Lee, C., et al. (1996). Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology (Berl.), 127, 164–173.CrossRefGoogle ScholarPubMed
Timmermann, D. B., Gronlien, J. H., Kohlhaas, K. L., et al. (2007). An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. The Journal of Pharmacology and Experimental Therapeutics, 323, 294–307.CrossRefGoogle ScholarPubMed
Tinsley, M. R., Quinn, J. J., & Fanselow, M. S. (2004). The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing pavlovian fear conditioning and inhibitory avoidance. Learning and Memory, 11, 35–42.CrossRefGoogle ScholarPubMed
Toda, M., & Abi-Dargham, A. (2007). Dopamine hypothesis of schizophrenia: Making sense of it all. Current Psychiatry Reports, 9, 329–336.CrossRefGoogle Scholar
Toth, E., & Lajtha, A. (1986). Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochemical Research, 11, 393–400.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1997). Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacology, Biochemistry, and Behavior, 56, 809–816.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1998). Enhancement of latent inhibition in the rat at a high dose of clozapine. Journal of Psychopharmacology, 12, 215–219.CrossRefGoogle Scholar
Trimble, K. M., Bell, R., & King, D. J. (2002). Effects of the selective dopamine D(1) antagonists NNC 01–0112 and SCH 39166 on latent inhibition in the rat. Physiology and Behavior, 77, 115–123.CrossRefGoogle ScholarPubMed
Turgeon, S. M., Auerbach, E. A., Duncan-Smith, M. K., George, J. R., & Graves, W. W. (2000). The delayed effects of DTG and MK-801 on latent inhibition in a conditioned taste-aversion paradigm. Pharmacology, Biochemistry, and Behavior, 66, 533–539.CrossRefGoogle Scholar
Turgeon, S. M., Auerbach, E. A., & Heller, M. A. (1998). The delayed effects of phencyclidine (PCP) disrupt latent inhibition in a conditioned taste aversion paradigm. Pharmacology, Biochemistry, and Behavior, 60, 553–558.CrossRefGoogle Scholar
Ukai, M., Okuda, A., & Mamiya, T. (2004). Effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition in mice. European Journal of Pharmacology, 492, 183–187.CrossRefGoogle ScholarPubMed
Vaitl, D., Lipp, O., Bauer, U., et al. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147–158.CrossRefGoogle ScholarPubMed
Vaitl, D., & Lipp, O. V. (1997). Latent inhibition and autonomic responses: a psychophysiological approach. Behavioural Brain Research, 88, 85–93.CrossRefGoogle ScholarPubMed
Meulen, J. A., Bilbija, L., Joosten, R. N., Bruin, J. P., & Feenstra, M. G. (2003). The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats. Neuroreport, 14, 2225–2228.CrossRefGoogle ScholarPubMed
Viu, E., Zapata, A., Capdevila, J., Skolnick, P., & Trullas, R. (2000). Glycine(B) receptor antagonists and partial agonists prevent memory deficits in inhibitory avoidance learning. Neurobiology of Learning and Memory, 74, 146–160.CrossRefGoogle ScholarPubMed
Warburton, E. C., Joseph, M. H., Feldon, J., Weiner, I., & Gray, J. A. (1994). Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Berl.), 114, 657–664.CrossRefGoogle ScholarPubMed
Weiner, I. (1990). Neural substrates of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl.), 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I., Bernasconi, E., Broersen, L. M., & Feldon, J. (1997a). Amphetamine-induced disruption of latent inhibition depends on the nature of the stimulus. Behavioural Pharmacology, 8, 442–457.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1987). Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology (Berl.), 91, 248–253.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1992). Phencyclidine does not disrupt latent inhibition in rats: Implications for animal models of schizophrenia. Pharmacology, Biochemistry, and Behavior, 42, 625–631.CrossRefGoogle Scholar
Weiner, I., & Feldon, J. (1997). The switching model of latent inhibition: an update of neural substrates. Behavioural Brain Research, 88, 11–25.CrossRefGoogle ScholarPubMed
Weiner, I., Feldon, J., & Katz, Y. (1987). Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacology, Biochemistry, and Behavior, 26, 241–246.CrossRefGoogle Scholar
Weiner, I., Izraeli-Telerant, A., & Feldon, J. (1987). Latent inhibition is not affected by acute or chronic administration of 6 mg/kg dl-amphetamine. Psychopharmacology (Berl.), 91, 345–351.CrossRefGoogle ScholarPubMed
Weiner, I., & Joel, D. (2002). Dopamine in schizophrenia: dysfunctional information processing in basal ganglia-thalamocortical split circuits. In Di Chiara, G. (Ed.), Handbook of Experimental Pharmacology, vol. 54/II, Dopamine in the CNS II. Berlin: Springer, pp. 418–472.Google Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1981). Chronic amphetamine and latent inhibition. Behavioural Brain Research, 2, 285–286.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl.), 83, 194–199.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry, and Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Barkai, R., & Feldon, J. (1997b). Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: Implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology, 16, 42–50.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Tarrasch, R., Kidron, R., & Feldon, J. (1996). The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biological Psychiatry, 40, 834–843.CrossRefGoogle ScholarPubMed
Weiner, I., Shofel, A., & Feldon, J. (1990). Disruption of latent inhibition by low dose of amphetamine is antagonized by haloperidol and apomorphine. Journal of Psychopharmacology, 4, 255.Google Scholar
Weiner, I., Tarrasch, R., Bernasconi, E., et al. (1997c). Amphetamine-induced disruption of latent inhibition is not reinforcer-mediated. Pharmacology, Biochemistry, and Behavior, 56, 817–826.CrossRefGoogle Scholar
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1996). Antipsychotic drug effects in a model of schizophrenic attentional disorder: a randomized controlled trial of the effects of haloperidol on latent inhibition in healthy people. Biological Psychiatry, 40, 1135–1143.CrossRefGoogle Scholar
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1997). Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology (Berl.), 133, 262–268.CrossRefGoogle ScholarPubMed
Wishka, D. G., Walker, D. P., Yates, K. M., et al. (2006). Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure–activity relationship. Journal of Medicinal Chemistry, 49, 4425–4436.CrossRefGoogle Scholar
Wolkin, A., Sanfilipo, M., Wolf, A. P., Angrist, B., Brodie, J. D., & Rotrosen, J. (1992). Negative symptoms and hypofrontality in chronic schizophrenia. Archives of General Psychiatry, 49, 959–965.CrossRefGoogle ScholarPubMed
Zuckerman, L., Rimmerman, N., & Weiner, I. (2003). Latent inhibition in 35-day-old rats is not an “adult” latent inhibition: implications for neurodevelopmental models of schizophrenia. Psychopharmacology (Berl.), 169, 298–307.CrossRefGoogle ScholarPubMed
Zuckerman, L., & Weiner, I. (2005). Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. Journal of Psychiatric Research, 39, 311–323.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×