Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T13:27:03.990Z Has data issue: false hasContentIssue false

5 - The Aging of Cognitive Control: Studies of Conflict Processing, Goal Neglect, and Error Monitoring

Published online by Cambridge University Press:  20 May 2010

Robert West
Affiliation:
118 Haggar Hall, University of Notre Dame, Notre Dame, IN 46556
Ritvij Bowry
Affiliation:
118 Haggar Hall, University of Notre Dame, Notre Dame, IN 46556
Randall W. Engle
Affiliation:
Georgia Institute of Technology
Grzegorz Sedek
Affiliation:
Warsaw School of Social Psychology and Polish Academy of Sciences
Ulrich von Hecker
Affiliation:
Cardiff University
Daniel N. McIntosh
Affiliation:
University of Denver
Get access

Summary

Over the past two decades, constructs bearing a strong conceptual resemblance to currently popular ideas related to cognitive control or the ability to regulate the information processing system in accordance with the goals of the individual have dominated models of cognitive aging. Hasher and Zacks (1979) argued that age-related declines across various domains of cognition result from reductions in the efficiency of effortful or controlled processes. More recently, these authors refined their position, arguing that age-related declines in the efficiency of inhibitory processes that allow one to modulate the influence of task irrelevant information were one of the primary causes of age-related disruptions in higher order cognition (Hasher & Zacks, 1988). Craik and Byrd (1982) argued that age-related declines in processing resources (i.e., working memory capacity or speed of processing) are largely responsible for age-related declines in cognition. The early paper of Hasher and Zacks (1979) and that of Craik and Byrd (1982) provided the foundation for extensive work during the 1980s and 1990s, demonstrating that many of the effects of age on higher order cognition are mediated by age-related variance in processing resource variables (see Park & Schwartz, 2000; Salthouse, 1996). During the same period, other investigators demonstrated that individual differences in processing resources, such as working memory capacity, were also good predictors of complex cognitive activity including reading and language comprehension in college-aged individuals (for a review see Engle, 1996).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alain, C., McNeely, H. E., Yu, H., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error monitoring deficits in patients with Schizophrenia. Cerebral Cortex, 12, 840–846.CrossRefGoogle ScholarPubMed
Albert, M., & Kaplin, E. (1980). Organic implications of neuropsycholgical deficits in the elderly. In Poon, L. W. (Ed.), New directions in memory and aging: Proceedings of the George A. Talland Memorial Conference (pp. 403–432). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ardila, A., & Rosselli, M. (1989). Neuropsychological characteristics of normal aging. Developmental Neuropsychology, 5, 307–320.CrossRefGoogle Scholar
Band, G., & Kok, A. (2000). Age effects on response monitoring in a mental rotation task. Biological Psychology, 51, 201–221.CrossRefGoogle Scholar
Bates, A. T., Kiehl, K. A., Laurens, K., & Liddle, P. F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clinical Neurophysiology, 113, 1454–1463.CrossRefGoogle Scholar
Bäckman, L., Ginovart, N., Dixon, R. A., Wahlin, T.-B. R., Whalin, A., Halldin, C., & Farde, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157, 635–637.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., Janowsky, J. S., Taylor, S. F., Yesavage, J. A., Mumenthaler, M. S., Jaguest, W. J., & Reed, B. R. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746–763.CrossRefGoogle ScholarPubMed
Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: The gating model. Progress in Brain Research, 121, 327–349.CrossRefGoogle ScholarPubMed
Bunce, D. J., Warr, P. B., & Cochrane, T. (1993). Blocks in choice responding as a function of age and physical fitness. Psychology and Aging, 8, 26–33.CrossRefGoogle ScholarPubMed
Burgio-Murphy, A. (2002). Error monitoring in children with attention-deficit hyperactivity disorder: ERPs and reaction time slowing. Dissertation Abstracts International, 62(8-B), 3794.Google Scholar
Cabeza, R. (2001). Functional neuroimaging of cognitive aging. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 331–377). Cambridge, MA: MIT Press.Google Scholar
Carter, C. S., MacDonald 3rd, A. W., Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: An event-related fMRI study. American Journal of Psychiatry, 158, 1423–1428.CrossRefGoogle Scholar
Carter, C. S., Mintun, M., Nichols, T., & Cohen, J. D. (1997). Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: an [15O]H2O PET study during single trial Stroop task performance. American Journal of Psychiatry, 154, 1670–1675.CrossRefGoogle Scholar
Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133.CrossRefGoogle ScholarPubMed
Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56, 173–189.CrossRefGoogle ScholarPubMed
Convit, A., Wolf, O. T., Leon, M. J., Patalinjug, M., Kandil, E., Caraos, C., Scherer, A., Saint Louis, L. A., & Cancro, R. (2001). Volumetric analysis of the pre-frontal regions: findings in aging and schizophrenia. Psychiatry Research: Neuroimaging Section, 48, 61–73.CrossRefGoogle Scholar
Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123, 354–373.CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F. I. M. & Trehub, S. (Eds.), Aging and cognitive processes (pp. 191–211). New York: Plenum.CrossRefGoogle Scholar
Craik, F. I. M., Morris, L. W., Morris, R. G., & Loewen, E. R. (1990). Aging, source amnesia, and frontal lobe functioning. Psychology and Aging, 5, 148–151.CrossRefGoogle ScholarPubMed
Daigneault, S., Braun, C. M. J., & Whitaker, H. A. (1992). Early effects of normal aging on perseverative and non-perseverative prefrontal measures. Developmental Neuropsychology, 8, 99–114.CrossRefGoogle Scholar
Keyser, M. J., Backer, J.-P., Vauquelin, G., & Ebinger, G. (1990). The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Research, 528, 309–310.CrossRefGoogle ScholarPubMed
Dempster, F. N. (1992). The rise and fall of inhibitory mechanisms: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 45–75.CrossRefGoogle Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303.CrossRefGoogle ScholarPubMed
Engle, R. W. (1996). Working memory and retrieval: An inhibition-resource approach. In Richardson, J. T. E., Engle, R. E., Hasher, L., Logie, R. H., Stoltzfus, E. R., & Zacks, R. T. (Eds.), Working memory and human cognition (pp. 89–119). New York: Oxford University Press.CrossRefGoogle Scholar
Falkenstein, M., Hielscher, H., Dziobek, I., Schwarzenau, P., Hoorman, J., Sundermann, B., & Hohnsbein, J. (2001). Action monitoring, error detection, and the basal ganglia: An ERP study. Neuroreport, 12, 157–161.CrossRefGoogle Scholar
Falkenstein, M., Hohnsbein, J., Hoorman, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hoorman, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 51, 87–107.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hoorman, J., & Hohnbein, J. (2001). Changes of error-related ERPs with age. Experimental Brain Research, 138, 258–262.CrossRefGoogle ScholarPubMed
Ford, J. M., Roth, W. T., Mohs, R. C., Hopkins, W. F., Kopell, B. S. (1979). Event-related potentials recorded from young and old adults during a memory retrieval task. Electroencephalography and Clinical Neurophysiology, 47, 450–459.CrossRefGoogle Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11, 1–6.CrossRefGoogle ScholarPubMed
Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.CrossRefGoogle ScholarPubMed
Grady, C. L., McIntosh, A. R., Horwitz, B., Maisog, J., Ungerleider, L. G., Mentis, M. J., Pietrini, P., Schapiro, M. B., & Haxby, J. V. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218–221.CrossRefGoogle ScholarPubMed
Greenwood, P. M. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6, 705–726.CrossRefGoogle ScholarPubMed
Hartley, A. A. (1993). Evidence for the selective preservation of spatial selective attention in old age. Psychology and Aging, 8, 371–379.CrossRefGoogle ScholarPubMed
Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356–388.CrossRefGoogle Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and new view. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193–225). New York: Academic Press.Google Scholar
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.CrossRefGoogle ScholarPubMed
Holroyd, C. B., Praamstra, P., Plat, E., & Coles, M. G. H. (2002). Spared error-related potentials in mild to moderate Parkinson's disease. Neuropsychologia, 40, 2116–2124.CrossRefGoogle ScholarPubMed
Jonides, J., Badre, D., Curtis, C., Thompson-Schill, S. L., & Smith, E. E. (2002). Mechanisms of conflict resolution in prefrontal cortex. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (pp. 233–245). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working memory capacity. Journal of Experimental Psychology: General, 130, 169–183.CrossRefGoogle ScholarPubMed
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contribution of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.CrossRefGoogle Scholar
Kaasinen, V., & Rinne, J. O. (2002). Functional imaging studies of dopamine system and cognition in normal aging and Parkinson's disease. Neuroscience & Biobehavioral Reviews, 26, 785–793.CrossRefGoogle ScholarPubMed
Kaasinen, V., Vilkman, H., Hietala, J., Ngren, K., Helenius, H., Olsson, H., Farde, L., & Rinne, J. O. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21, 683–688.CrossRefGoogle ScholarPubMed
Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenia patients. Journal of Abnormal Psychology, 108, 337–346.CrossRefGoogle Scholar
Li, S-C. (2002). Connecting the many levels and facets of cognitive aging. Current Directions in Psychological Science, 11, 38–43.CrossRefGoogle Scholar
Li, S-C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In Nilsson, L.-G. & Markowitsch, H. J. (Eds.), Cognitive Neuroscience of Memory (pp. 103–146). Seattle: Hogrefe & Huber.Google Scholar
Li, S-C., & Sikström, S. (2002). Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neuroscience & Biobehavioral Reviews, 25, 795–808.CrossRefGoogle Scholar
Lindsay, D. S., & Jacoby, L. L. (1994). Stroop process dissociations: The relationship between facilitation and interference. Journal of Experimental Psychology: Human Perception and Performance, 20, 219–234.Google ScholarPubMed
Liotti, M., Woldorff, M. G., Perez III, R., & Mayberg, H. S. (1999). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701–711.CrossRefGoogle Scholar
Lowe, D. G., & Mitterer, J. O. (1982). Selective and divided attention in a Stroop task. Canadian Journal of Psychology, 36, 684–700.CrossRefGoogle Scholar
MacDonald, A. W. 3rd., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefGoogle ScholarPubMed
MacLeod, P. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefGoogle Scholar
MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function, and social decision making: A dorsolateral prefrontal theory of cognitive aging. Psychology and Aging, 17, 598–609.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111, 22–41.CrossRefGoogle Scholar
McNeely, H. E., West, R., Christensen, B. K., & Alain, C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112, 679–688.CrossRefGoogle ScholarPubMed
Milhan, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 49, 277–296.CrossRefGoogle Scholar
Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G. H., Holroyd, C. B., Kok, A., & Molen, M. W. (2002). A computational account of altered error processing in older age: Dopamine and the error-related negativity. Cognitive, Affective, & Behavioral Neuroscience, 2, 19–36.CrossRefGoogle ScholarPubMed
Park, D. C., & Schwarz, N. (2000). Aging and cognition: A student primer. Philadelphia: Psychology Press.Google Scholar
Perlstein, W. M., Carter, C. S., Barch, D. M., & Baird, J. W. (1998). The Stroop task and attention deficits in schizophrenia: A critical evaluation of card and single-trial Stroop methodologies. Neuropsychology, 12, 414–425.CrossRefGoogle ScholarPubMed
Phillips, L. H., & Della Sala, S. (1998). Aging, intelligence, and anatomical segregation in the frontal lobes. Learning and Individual Differences, 10, 217–243.CrossRefGoogle Scholar
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The handbook of aging and cognition (2nd ed., pp. 1–90). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Raz, N., Gunning-Dixon, F. M., Head, D. P., Dupuis, J. H., & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: Evidence from structural MRI. Neuropsychology, 12, 95–114.CrossRefGoogle Scholar
Raz, N., Williamson, A., Gunning-Dixon, F., Head, D., & Acker, J. D. (2000). Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microscopy Research and Technique, 51, 85–93.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Reason, J. (1979). Actions not as planned: The price of automatization. In Underwood, G. & Stevens, R. (Eds.), Aspects of consciousness (pp. 67–89). London, UK: Academic Press.Google Scholar
Rebai, M., Bernard, C., & Lannou, J. (1997). The Stroop's test evokes a negative brain potential, the N400. International Journal of Neuroscience, 91, 85–94.CrossRefGoogle ScholarPubMed
Rinne, J. O. (1987). Muscarinic and dopaminergic receptors in the aging human brain. Brain Research, 404, 162–168.CrossRefGoogle ScholarPubMed
Rubin, D. C. (1999). Frontal-striatal circuits in cognitive aging: Evidence for caudate involvement. Aging, Neuropsychology, and Cognition, 6, 241–259.CrossRefGoogle Scholar
Salthouse, T. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.CrossRefGoogle ScholarPubMed
Salthouse, T. A., & Meinz, E. J. (1995). Aging, inhibition, working memory, and speed. Journal of Gerontology: Psychological Sciences, 50B, P297–P306.CrossRefGoogle Scholar
Shimamura, A. P., & Jurica, P. J. (1994). Memory interference effects and aging: Findings from a test of frontal lobe function. Neuropsychology, 8, 408–412.CrossRefGoogle Scholar
Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with Dementia of the Alzheimer's Type. Journal of Experimental Psychology: Human Perception and Performance, 22, 461–479.Google ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–663.CrossRefGoogle Scholar
Suhara, T., Fukuda, H., Inoue, O., Itoh, T., Suzuki, K., Yamasaki, T., & Tateno, Y. (1991). Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology, 103, 41–45.CrossRefGoogle ScholarPubMed
Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceeding of the National Academy of Science, 99, 16354–16359.CrossRefGoogle ScholarPubMed
Verhaeghen, P., & Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13, 120–126.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, G. J., Pappas, N., Logan, J., MacGregor, R., Alexoff, D., Wolf, A. P., Warner, D., Cilento, R., & Zezulkova, I. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.Google ScholarPubMed
West, R. (1999). Age differences in lapses of intention in the Stroop task. Journal of Gerontology: Psychological Sciences, 54B, P34–P43.CrossRefGoogle Scholar
West, R. (2001). The transient nature of executive control processes in younger and older adults. European Journal of Cognitive Psychology, 13, 91–105.CrossRefGoogle Scholar
West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122–1135.CrossRefGoogle ScholarPubMed
West, R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16, 103–113.CrossRefGoogle ScholarPubMed
West, R., & Alain, C. (2000a). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37, 179–189.CrossRefGoogle Scholar
West, R., & Alain, C. (2000b). Effect of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 873, 102–111.CrossRefGoogle Scholar
West, R., & Alain, C. (2000c). Evidence for the transient nature of a neural system supporting goal-directed action. Cerebral Cortex, 8, 748–752.CrossRefGoogle Scholar
West, R. & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology and Aging, 13, 206–217.CrossRefGoogle ScholarPubMed
West, R., & Bell, M. A. (1997). Stroop color-word interference and EEG activation: Evidence for age-related decline in prefrontal functioning. Neuropsychology, 11, 421–427.CrossRefGoogle Scholar
West, R., Ergis, A-M., Winocur, G., & Saint-Cyr, J. (1998). The contribution of impaired working memory monitoring to performance of the Self Ordered Pointing task in normal aging and Parkinson's disease. Neuropsychology, 12, 546–554.CrossRefGoogle ScholarPubMed
West, R., Jakubek, K., Wymbs, N., & Perry, M. (2002, April). Neural correlates of conflict processing in the Stroop and Stoop-like tasks. Journal of Cognitive Neuroscience: Supplement, 24.Google Scholar
West, R., & Moore, K. (in press). Adjustments of cognitive control in younger and older adults. Cortex.
West, R., Murphy, K. J., Armilio, M. L., Craik, F. I. M., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and Cognition, 49, 402–419.CrossRefGoogle ScholarPubMed
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.CrossRefGoogle ScholarPubMed
Whelihan, W. M., & Lesher, E. L. (1985). Neuropsychological changes in frontal functions with aging. Developmental Neuropsychology, 1, 371–380.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×