Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-11T20:33:06.205Z Has data issue: false hasContentIssue false

9 - Functional relevance of cortical plasticity

Published online by Cambridge University Press:  12 August 2009

Pablo A. Celnik
Affiliation:
Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
Leonardo G. Cohen
Affiliation:
Human Cortical Physiology Section, NINDS, NIH, Bethesda, MD, USA
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Introduction

The human central nervous system (CNS) can change in response to new environmental challenges or lesions. While such changes are more pronounced in the developing brain, they are also present in adults. It has been a widely held belief that these alterations underlie behavioural modifications such as learning new skills or recovery of lost function after injuries. However, until recently there has been little evidence to support this assertion. The development of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), event-related potentials, electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS), have demonstrated that neuroplastic modifications have functional implications.

TMS is a non-invasive technique that allows focal delivery of currents into the brain. It is possible to apply TMS to a specific cortical region and disrupt cortical activity there. Evaluation of the behavioural consequences of this disruption describes some of the functions of that part of the brain. TMS can therefore produce a ‘virtual lesion’ that lasts for milliseconds (Gerloff et al., 1997; Amassian et al., 1989). In the presence of brain reorganization, TMS could be applied to the reorganized cortical regions, while the subject performs a specific task. If TMS, by disrupting the activity of that part of the brain, results in altered performance, it could be inferred that the reorganized cortex plays an adaptive role. In this chapter, we will discuss experimental evidence leading to the identification of the functional role of neuroplasticity using TMS.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 231 - 245
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A. & Eberle, L. (1989). Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol., 74: 458–462CrossRefGoogle ScholarPubMed
Amassian, V. E., Maccabee, P. J., Cracco, R. Q.. (1994). The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr. Clin. Neurophysiol., 93: 21–26CrossRefGoogle ScholarPubMed
Barer, D. (1989). The natural history and functional consequences of dysphagia after hemispheric stroke. J. Neurol. Neurosurg. Psychiatry, 52: 236–241CrossRefGoogle ScholarPubMed
Barker, A. T., Jalinous, R. & Freeston, I. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1106–1107CrossRefGoogle ScholarPubMed
Birbaumer, N., Lutzenberger, W., Montoya, P.. (1997). Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J. Neurosci., 17: 5503–5508CrossRefGoogle ScholarPubMed
Chen, R., Corwell, B., Yaseen, Z., Hallett, M. & Cohen, L. (1998). Mechanisms of cortical reorganization in lower-limb amputees. J. Neurosci., 18: 3443–3450CrossRefGoogle Scholar
Cohen, L. G., Roth, B. J., Nilsson, J.. (1990). Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol., 75: 350–357CrossRefGoogle ScholarPubMed
Cohen, L., Bandinelli, S., Findley, T. W. & Hallett, M. (1991). Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain, 114: 615–627CrossRefGoogle Scholar
Cohen, L. G., Celnik, P., Pascual-Leone, A.. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389: 180–183CrossRefGoogle ScholarPubMed
Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K. & Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Ann. Neurol., 45: 451–603.0.CO;2-B>CrossRefGoogle ScholarPubMed
Dufour, A. & Yannick, G. (2000). Improved auditory spatial sensitivity in near-sighted subjects. Cogn. Brain Res., 10: 159–165CrossRefGoogle ScholarPubMed
Elbert, T., Flor, H., Birbaumer, N.. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport, 5: 2593–2597CrossRefGoogle ScholarPubMed
Epelbaum, M., Milleret, C., Buisseret, P. & Dufier, J. (1993). The sensitive period for strabismic amblyopia in humans. Ophthalmology, 100: 323–327CrossRefGoogle ScholarPubMed
Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C. & Larbig, W. (1995). Phantom limb pain as a perceptual correlate of massive cortical reorganization in upper extremity amputees. Nature, 375: 482–484CrossRefGoogle Scholar
Fuhr, P., Agostino, R. & Hallett, M. (1991). Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr. Clin. Neurophysiol., 81: 257–262CrossRefGoogle ScholarPubMed
Fuhr, P., Cohen, L. G., Dang, N.. (1992). Physiological analysis of motor reorganization following lower limb amputation. Electroencephalogr. Clin. Neurophysiol., 85: 53–60CrossRefGoogle ScholarPubMed
Gerloff, C., Corwell, B., Chen, R., Hallett, M. & Cohen, L. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120: 1587–1602CrossRefGoogle ScholarPubMed
Gordon, C., Langton-Hewer, R. & Wade, D. T. (1987). Dysphagia in acute stroke. Br. Med. J., 295: 411–414CrossRefGoogle ScholarPubMed
Hall, E. J., Flament, D., Fraser, C. & Lemon, R. (1990). Non-invasive brain stimulation reveals reorganized cortical outputs in amputees. Neurosci. Lett., 116: 379–386CrossRefGoogle ScholarPubMed
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1996). The cortical topography of human swallowing musculature in health and disease. Nat. Med., 2: 1217–1224CrossRefGoogle ScholarPubMed
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1997). Explaining oro-pharyngeal dysphagia after unilateral hemispheric stroke. Lancet, 350: 686–692CrossRefGoogle Scholar
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1998). Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology, 115: 1104–1112CrossRefGoogle ScholarPubMed
Henderson, D. C., Evans, J. R. & Dobelle, W. H. (1979). The relationship between stimulus parameters and phosphene threshold/brightness, during stimulation of human visual cortex. Trans. Am. Soc. Artif. Intern. Organs., 25: 367–371CrossRefGoogle ScholarPubMed
Huse, E., Larbig, W., Flor, H. & Birbaumer, N. (2001). The effect of opioids on phantom limb pain and cortical reorganization. Pain, 90: 47–55CrossRefGoogle Scholar
Jensen, T. S. & Rasmussen, P. (1995). Phantom limb pain and related phenomena after amputation. Textbook of Pain, ed. P. D. Wall & R. Melzack, pp. 651–665. New York: Churchill Livingstone
Jensen, T. S., Krebs, B., Nielsen, J. & Rasmussen, P. (1985). Immediate and long-term phantom limb pain in amputees: incidence, clinical characteristics and relationship to pre-amputation limb pain. Pain, 21: 267–278CrossRefGoogle ScholarPubMed
Johnson, J. S. & Newport, E. (1989). Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language. Cogn. Psychol., 21: 60–99CrossRefGoogle ScholarPubMed
Karl, A., Birbaumer, N., Lutzenberger, W., Cohen, L. G. & Flor, H. (2001). Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci., 21: 3609–3618CrossRefGoogle ScholarPubMed
Katz, J. (1992). Psychophysiological contributions to phantom limbs. Can. J. Psychiatry, 37: 282–298CrossRefGoogle ScholarPubMed
Kew, J. J., Halligan, P. W., Marshall, J. C.. (1997). Abnormal access of axial vibrotactile input to deafferented somatosensory cortex in human upper limb amputees. J. Neurophysiol., 77: 2753–2764CrossRefGoogle ScholarPubMed
Korte, M. & Rauschecker, J. (1993). Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J. Neurophysiol., 70: 1717–1721CrossRefGoogle ScholarPubMed
Kujala, T., Alho, K., Kekoni, J.. (1995a). Auditory and somatosensory event-related brain potentials in early blind humans. Exp. Brain Res., 104: 519–526CrossRefGoogle Scholar
Kujala, T., Huotilainen, M., Sinkkonen, J.. (1995b). Visual cortex activation in blind subjects during sound discrimination. Neurosci. Lett., 183: 143–146CrossRefGoogle Scholar
Kujala, T., Alho, K., Huotilainen, M.. (1997). Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology, 34: 213–216CrossRefGoogle ScholarPubMed
Lenneberg, E. (1969). On explaining language. Science, 9: 635–643CrossRefGoogle Scholar
Lewald, J., Foltys, H. & Topper, R. (2002). Role of the posterior parietal cortex in spatial hearing. J. Neurosci., 22: RC207CrossRefGoogle ScholarPubMed
Luders, H., Lesser, R. P., Dinner, D. S. et al. (1987). Commentary: chronic intracranial recording and stimulation with subdural electrodes. In Surgical Treatment of the Epilepsies, ed. J. Engel, pp. 297–321. New York: Raven Press
Maccabee, P. J., Amassian, V. E., Cracco, R. Q., Cracco, J. B., Eberle, L. & Rudell, A. (1991a). Stimulation of the human nervous system using the magnetic coil. J. Clin. Neurophysiol., 8: 38–55CrossRefGoogle Scholar
Maccabee, P. J., Amassian, V. E., Cracco, R. Q.. (1991b). Magnetic coil stimulation of human visual cortex: studies of perception. Electroencephalogr. Clin. Neurophysiol. Suppl., 43: 111–120Google Scholar
Muchnik, C., Efrati, M., Nemeth, E., Malin, M. & Hildesheimer, M. (1991). Central auditory skills in blind and sighted subjects. Scand. Audiol., 20: 19–23CrossRefGoogle ScholarPubMed
Ojemann, G. (1983). Brain organization for language from the perspective of electrical stimulation mapping. Behav. Brain Sci., 6: 190–206CrossRefGoogle Scholar
Pascual-Leone, A., Walsh, V. & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol., 10: 232–237CrossRefGoogle ScholarPubMed
Pons, T. (1996). Novel sensations in the congenitally blind. Nature, 380: 479–480Google ScholarPubMed
Ramachandran, V. S., Rogers-Ramachandran, D. & Stewart, M. (1992a). Perceptual correlates of massive cortical reorganization. Science, 13: 1159–1160CrossRefGoogle Scholar
Ramachandran, V. S., Stewart, M. & Rogers-Ramachandran, D. (1992b). Perceptual correlates of massive cortical reorganization. Neuroreport, 3: 583–586CrossRefGoogle Scholar
Rauschecker, J. P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci., 18: 36–43CrossRefGoogle ScholarPubMed
Rauschecker, J. P. & Kniepert, U. (1994). Enhanced precision of auditory localization behaviour in visually deprived cats. Eur. J. Neurosci., 6: 149–160CrossRefGoogle ScholarPubMed
Rice, C. E., Feinstein, S. H. & Schusterman, R. (1965). Echo-detection ability of the blind: size and distance factor. J. Exp., 70: 246–251Google Scholar
Roder, B., Teder-Salejarvi, W., Sterr, A., Rosler, F., Hillyard, S. A. & Neville, H. (1999). Improved auditory spatial tuning in blind humans. Nature, 400: 162–166CrossRefGoogle ScholarPubMed
Roricht, S., Meyer, B. U., Niehaus, L. & Brandt, S. A. (1999). Long-term reorganization of motor cortex outputs after arm amputation. Neurology, 53: 106–111CrossRefGoogle ScholarPubMed
Roth, B. J., Saypol, J. M., Hallett, M. & Cohen, L. (1991). A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr. Clin. Neurophysiol., 81: 47–56CrossRefGoogle ScholarPubMed
Rushton, D. N. & Brindley, G. S. (1978). Properties of cortical electrical phosphenes. In Frontiers in Visual Science, ed. S. S. J. Cool & E. L. Smith, pp. 574–593. New York: Springer-VerlagCrossRef
Sadato, N., Pascual-Leone, A., Grafman, J.. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380: 526–528CrossRefGoogle ScholarPubMed
Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., ORourke, D. K. & Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: 507–522CrossRefGoogle ScholarPubMed
Sherman, R. (1989). Stump and phantom limb pain. Neurol. Clin., 7: 249–264CrossRefGoogle ScholarPubMed
Sunderland, S. (1978). Nerves and Nerve Injuries. Edinburgh: Churchill Livingstone
Uhl, F., Franzen, P., Podreka, I., Steiner, M. & Deecke, L. (1993). Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci. Lett., 19: 162–164CrossRefGoogle Scholar
Vargha-Khadem, F., Carr, L. J., Isaacs, E., Brett, E., Adams, C. & Mishkin, M. (1997). Onset of speech after left hemispherectomy in a nine-year-old boy. Brain, 120: 159–182CrossRefGoogle Scholar
Wanet-Defalque, M. C., Veraart, C., Volder, A.. (1988). High metabolic activity in the visual cortex of early blind human subjects. Brain Res., 19: 369–373CrossRefGoogle Scholar
Weeks, R., Horwitz, B., Aziz-Sultan, A.. (2000). A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci., 20: 2664–2672CrossRefGoogle ScholarPubMed
Zangaladze, A., Epstein, C. M., Grafton, S. T. & Sathian, K. (1999). Involvement of visual cortex in tactile discrimination of orientation. Nature, 401: 587–590CrossRefGoogle ScholarPubMed
Ziemann, U., Lonnecker, S., Steinhoff, B. J. & Paulus, W. (1996). Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann. Neurol., 40: 367–378CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×