Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-27T18:37:35.173Z Has data issue: false hasContentIssue false

10 - Brainstem

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The brainstem is the connection between the spinal cord, the cerebellum, and the cerebrum. Only recently has it been implicated in behavior. The brainstem is anatomically comprised of three areas: (1) the medulla, (2) the pons, and (3) the midbrain (see Figure 2.1). The medulla, the inferior segment of the brainstem, represents a conical, expanded continuation of the upper cervical spinal cord. The pons lies between the medulla and the midbrain. The midbrain is the smallest and least differentiated division of the brainstem. The nuclei of cranial nerves III through XII are located in the brainstem along with long sensory and motor tracts that pass between the brain and spinal cord. Several regions of the brainstem, however, seem to be significantly involved in behavior. These behaviorally active regions include: (1) the reticular formation, (2) the parabrachial nucleus, (3) the raphe nuclei, (4) the periaqueductal gray, (5) the nucleus locus ceruleus, (6) the lateral tegmental nucleus, and (7) the ventral tegmental area (VTA). The VTA is considered to be one of the basal ganglia (see Chapter 7).

Anatomy and behavioral considerations

Reticular formation

The reticular formation is one of the oldest portions of the brain and represents the core of the brainstem. It is composed of complex collections of cells that form both diffuse cellular aggregations and more defined nuclei.

The ascending reticular activating system (ARAS) is a physiological concept. It is represented anatomically by the central core region of the brainstem (Figure 10.1), including the raphe nuclei (Figure 10.2).

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 165 - 177
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aletrino, M. A., Vogels, D. J. M., Doinburg, P. H. M. F., and Ten Donkelaar, H. J. 1992. Cell loss in the nucleus raphe dorsalis in Alzheimer's disease. Neurobiol. Aging 13:461–468.CrossRefGoogle ScholarPubMed
Andersen, G. 1995. Treatment of uncontrolled crying after stroke. Drugs Aging 6:105–111.CrossRefGoogle ScholarPubMed
Aston-Jones, G., and Bloom, F. E. 1981. Norepinephrine containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1:887–900.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Shipley, M. T., Ennis, M., Williams, J. T., and Pieribone, V. A. 1990. Restricted afferent control of locus coeruleus neurons revealed by anatomical, physiological, and pharmacological studies. In: Heal, D. J., and Marsden, C. A. (eds.) The Pharmacology of Noradrenaline in the Central Nervous System. Oxford: Oxford University Press, pp. 187–247.Google Scholar
Aston-Jones, G., Chiang, C., and Alexinsky, T. 1991a. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog. Brain Res. 88:501–520.CrossRefGoogle Scholar
Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., Bockstaele, E., Pieribone, V., Shiekhattar, R., Akaoka, H., Drolet, G., Astier, B., Charlety, P., Valentino, R. J., and Williams, J. T. 1991b. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog. Brain Res. 88:47–75.CrossRefGoogle Scholar
Aston-Jones, G., Shipley, M. T., and Grzanna, R. 1995. The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos, G. (ed.) The Rat Nervous System, 2nd edn. San Diego, Calif.: Academic Press, pp. 183–213.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., and Shipley, M. T. 1996. Role of the locus coeruleus in emotional activation. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:379–402.
Aston-Jones, G., Rajkowski, R., and Kubiak, P. 1997. Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience 80:697–715.CrossRefGoogle Scholar
Bandler, R., and Keay, K. A. 1996. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:285–300.CrossRef
Bernard, J. F., Bester, H., and Besson, J. M. 1996. Involvement of the spino-parabrachio-amygdaloid and -hypothalamic pathways in the autonomic and affective emotional aspects of pain. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:243–255.CrossRef
Berridge, D. W. 1993. Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models. Psychol. Med. 23:557–564.CrossRefGoogle ScholarPubMed
Blum, K., and Kozlowski, G. P. 1990. Ethanol and neuromodulator interactions: a cascade model of reward. Prog. Alcohol Res. 2:131–149.Google Scholar
Burstein, R. 1996. Somatosensory and visceral input to the hypothalamus and limbic system. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:257–267.
Chen, C. P., Adler, J. T., Bowen, D. M., Esiri, M. M., McDonald, B., Hope, T., Jobst, K. A., and Francis, P. T. 1996. Presynaptic serotonergic dysfunction in patients with Alzheimer's disease: correlations with depression and neuroleptic medication. J. Neurochem. 66:1592–1598.CrossRefGoogle ScholarPubMed
Craig, A. D. 1996. An ascending general homeostatic afferent pathway originating in lamina I. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:226–242.CrossRef
Curtis, A. L., and Valentino, R. J. 1994. Corticotropin-releasing factor neurotransmission in locus coeruleus: a possible site of antidepressant action. Brain Res. Bull. 35:581–587.CrossRefGoogle ScholarPubMed
Foote, S. L., Bloom, F. E., and Aston-Jones, G. 1983. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63:844–901.CrossRefGoogle ScholarPubMed
Forstl, H., Burns, A., Luthert, P., Cairns, N., Lantos, P., and Levy, R. 1992. Clinical and neuropathological correlates of depression in Alzheimer's disease. Psychol. Med. 22:877–884.CrossRefGoogle ScholarPubMed
Gorman, J. M., Liebowitz, M. R., Fyer, A. J., and Stein, J. 1989. A neuroanatomical hypothesis for panic disorder. Am. J. Psychiatry 146:148–161.Google ScholarPubMed
Halliday, G., and Baker, K. 1996. Noradrenergic locus coeruleus neurons. Alcohol Clin. Exp. Res. 20:191–192.CrossRefGoogle ScholarPubMed
Holets, V. R. 1988. Locus coeruleus neurons in the rat containing neuropeptide Y, tyrosine hydroxylase or galanin and their efferent projections to the spinal cord, cerebral cortex and hypothalamus. Neuroscience 24:893–906.CrossRefGoogle ScholarPubMed
Holstege, G. 1988. Anatomical evidence for a strong ventral parabrachial projection to nucleus raphe magnus and adjacent tegmental field. Brain Res. 447:154–158.CrossRefGoogle ScholarPubMed
Hoogendijk, W. J. G., Sommer, I. E. C., Pool, C. W., Kamphorst, W., Hofman, M. A., Eikelnboom, P., and Swaab, D. F. 1999. Lack of association between depression and loss of neurons in the locus coeruleus in Alzheimer disease. Arch. Gen. Psychiatry 56:45–51.CrossRefGoogle ScholarPubMed
Jacobs, B. L. 1990. Locus coeruleus neuronal activity in behaving animals. In: Heal, D. J., and Marsden, C. A (eds.) The Pharmacology of Noradrenaline in the Central Nervous System. Oxford: Oxford University Press, pp. 248–265.Google Scholar
Jacobs, B. L. 1994. Serotonin, motor activity and depression-related disorders. Am. Sci. 82:456–463.Google Scholar
Jacobs, B. L., and Fornal, C. A. 1993. 5-HT and motor control: a hypothesis. Trends Neurosci. 16:346–352.CrossRefGoogle ScholarPubMed
Karson, C. N., Garcia-Rill, E., Biedermann, J., Mrak, R. E., Husain, M. M., and Skinner, R. D. 1991. The brain stem reticular formation in schizophrenia. Psychiatry Res. 40:31–48.CrossRefGoogle Scholar
Karson, C. N., Casanova, M. F., Kleinman, J. E., and Griffin, W. S. T. 1993. Choline acetyltransferase in schizophrenia. Am. J. Psychiatry 50:454–459.Google Scholar
Kitayama, I., Nakamura, S., Yaga, T., Murase, S., Nomura, J., Kayahara, T., and Nakano, K. 1994. Degeneration of locus coeruleus axons in stress-induced depression model. Brain Res. Bull. 35:573–580.CrossRefGoogle ScholarPubMed
Kline, P., and Oertel, J. 1997. Depression associated with pontine vascular malformation. Biol. Psychiatry 42:519–521.CrossRefGoogle Scholar
Lovick, T. A. 1996. Midbrain and medullary regulation of defensive cardiovascular functions. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:301–313.
Luppi, P.-H., Aston-Jones, G., Akaoka, H., Chouvet, G., and Jouvet, M. 1995. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 65:119–160.CrossRefGoogle ScholarPubMed
Mason, P., and Leung, C. G. 1996. Physiological functions of pontomedullary raphe and medial reticular neurons. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:269–282.CrossRef
Mefford, I. N., and Potter, W. Z. 1989. a neuroanatomical and biochemical basis of attention deficit disorder with hyperactivity in children: a defect in tonic adrenaline mediated inhibition of locus coeruleus stimulation. Med. Hypotheses 29:33–42.CrossRefGoogle ScholarPubMed
Mendez, M. F. 1992. Pavor nocturnus from a brainstem glioma. J. Neurol. Neurosurg. Psychiatry 55:860.CrossRefGoogle ScholarPubMed
Mendez, M. F., and Bronstein, Y. L. 1999. Crying spells presenting as a transient ischemic attack. J. Neurol. Neurosurg. Psychiatry 67:255.CrossRefGoogle Scholar
Mogenson, G. J., Wu, M., and Tsai, C. T. 1989. Subpallidal-pedunculopontine projections but not subpallidal-mediodorsal thalamus projections contribute to spontaneous exploratory locomotor activity. Brain. Res. 485:396–398.CrossRefGoogle Scholar
Mylecharane, E. J. 1996. Ventral tegmental area 5-HT receptors: mesolimbic dopamine release and behavioural studies. Behav. Brain Res. 73:1–5.CrossRefGoogle ScholarPubMed
Nashold, B. S. Jr., Wilson, W. P., and Slaugher, G. 1974. The midbrain and pain. In: J. J. Bonica (ed.) International Symposium on Pain. Adv. Neurol. 4:191–196.
Nestler, E. J., and Aghajanian, G. K. 1997. Molecular and cellular basis of addiction. Science 278:58–63.CrossRefGoogle Scholar
Nicoll, R. A., Madison, D. V., and Lancaster, B. 1987. Noradrenergic modulation of neuronal excitability in mammalian hippocampus. In: Meltzer, H. Y. (ed.) Psychopharmacology: The Third Generation of Progress. New York: Raven Press, pp. 105–112.Google Scholar
Self, D. W., and Nestler, E. J. 1995. Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18:463–495.CrossRefGoogle ScholarPubMed
Semba, K. 1993. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J. Comp. Neurol. 330:543–556.CrossRefGoogle ScholarPubMed
Williams, J. T., Christie, M. J., and Manszoni, O. 2001. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81:299–343.CrossRefGoogle ScholarPubMed
Winn, P., Brown, V. J., and Inglis, W. L. 1997. On the relationships between the striatum and the pedunculopontine tegmental nucleus. Crit. Rev. Neurobiol. 11:241–261.CrossRefGoogle ScholarPubMed
Zweig, R. M., Cardillo, J. E., Cohen, M., Giere, S., and Hedreen, J. C. 1993. The locus coeruleus and dementia in Parkinson' s disease. Neurology 43:986–991.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×