Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T21:08:27.605Z Has data issue: false hasContentIssue false

17 - The role of synchronous gamma-band activity in schizophrenia

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

Despite almost 100 years of research into the pathophysiology of schizophrenia, the causes and mechanisms underlying the disease remain poorly understood. For a long time, biological research has focused on finding regionally specific pathophysiological processes in this disorder. In the last decade, however, theories of schizophrenia have laid emphasis upon pathophysiological mechanisms, which involve multiple cortical areas and their coordination. These theories suggest that the core impairment underlying both dysfunctional cognition and the overt symptoms of the disorder arise from a dysfunction in the integration and coordination of distributed neural activity (Andreasen, 1999; Friston, 1999; Phillips and Silverstein, 2003).

Interestingly, a disturbance of integrative processing had already been suggested by Bleuler (1950). He coined the term schizophrenia (“split mind”) to highlight the fragmentation of mental functions. According to him, the fragmentation of mental functions constituted the primary disturbance in schizophrenia that represented a direct manifestation of the organic pathology whilst other symptoms, such as delusions and hallucinations, were accessory or secondary manifestations of the disease process. Contemporary models of schizophrenia for instance by Friston (1999) suggest that the core pathology is an impaired control of (experience-dependent) synaptic plasticity that manifests as abnormal functional integration of neural systems, i.e. dysconnectivity. Andreasen (1999) used “cognitive dysmetria” to refer to the fact that patients with diverse clinical and cognitive deficits share a common underlying deficit in the “timing or sequencing component of mental activity” across multiple brain regions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, L. E., Hoffer, L. D., Wiser, A., and Freedman, R. (1993). Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiat 150:1856–1861.Google ScholarPubMed
Andreasen, N. C. (1999). A unitary model of schizophrenia: Bleuler's “fragmented phrene” as schizencephaly. Arch Gen Psychiat 56:781–787.CrossRefGoogle ScholarPubMed
Artieda, J., Valencia, M., Alegre, M., et al. (2004). Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway. Clin Neurophysiol 115:699–709.CrossRefGoogle ScholarPubMed
Awh, E., Barton, B., and Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci 18:622–628.CrossRefGoogle ScholarPubMed
Azzena, G. B., Conti, G., Santarelli, R., et al. (1995). Generation of human auditory steady-state responses (SSRs). I. Stimulus rate effects. Hear Res 83:1–8.CrossRefGoogle ScholarPubMed
Baldeweg, T., Spence, S., Hirsch, S. R., and Gruzelier, J. (1998). Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352:620–621.CrossRefGoogle Scholar
Basar, E. (1980). EEG-Brain Dynamics: Relation between EEG and Brain Evoked Potentials. Amsterdam, the Netherlands: Elsevier.Google Scholar
Basar-Eroglu, C., Brand, A., Hildebrandt, H., et al. (2007). Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64:39–45.CrossRefGoogle ScholarPubMed
Behrendt, R. P. and Young, C. (2004). Hallucinations in schizophrenia, sensory impairment, and brain disease: a unifying model. Behav Brain Sci 27:771–787; discussion 787–830.CrossRefGoogle ScholarPubMed
Benes, F. M. and Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27.CrossRefGoogle ScholarPubMed
Bleuler, E. (1950). Dementia Praecox or the Group of Schizophrenias. New York: International University Press.Google Scholar
Braff, D. L. and Light, G. A. (2004). Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology 174:75–85.CrossRefGoogle ScholarPubMed
Brenner, C. A., Sporns, O., Lysaker, P. H., and O'Donnell, B. F. (2003). EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder. Am J Psychiat 160:2238–2240.CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932.CrossRefGoogle ScholarPubMed
Buhl, E. H., Tamas, G., and Fisahn, A. (1998). Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126.CrossRefGoogle ScholarPubMed
Canolty, R. T., Edwards, E., Dalal, S. S., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628.CrossRefGoogle ScholarPubMed
Cho, R. Y., Konecky, R. O., and Carter, C. S. (2006). Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 103:19 878–19 883.CrossRefGoogle Scholar
Clementz, B. A., Blumenfeld, L. D., and Cobb, S. (1997). The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–3893.CrossRefGoogle Scholar
Crawford, H. J., McClain-Furmanski, D., Castagnoli, N., and Castagnoli, K. (2002). Enhancement of auditory sensory gating and stimulus-bound gamma band (40 Hz) oscillations in heavy tobacco smokers. Neurosci Lett 317:151–155.CrossRefGoogle ScholarPubMed
Davidson, M., Reichenberg, A., Rabinowitz, J., et al. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiat 156:1328–1335.Google ScholarPubMed
Demiralp, T., Herrmann, C. S., Erdal, M. E., et al. (2006). DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17:1007–1019.CrossRefGoogle ScholarPubMed
Demiralp, T., Bayraktaroglu, Z., Lenz, D., et al. (2007). Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol 64:24–30.CrossRefGoogle ScholarPubMed
Doheny, H. C., Faulkner, H. J., Gruzelier, J. H., Baldeweg, T., and Whittington, M. A. (2000). Pathway-specific habituation of induced gamma oscillations in the hippocampal slice. Neuroreport 11:2629–2633.CrossRefGoogle ScholarPubMed
Engel, A. K., Konig, P., Kreiter, A. K., Schillen, T. B., and Singer, W. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226.CrossRefGoogle Scholar
Fabian-Fine, R., Skehel, P., Errington, M. L., et al. (2001). Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21:7993–8003.CrossRefGoogle ScholarPubMed
Ford, J. M. and Mathalon, D. H. (2005). Corollary discharge dysfunction in schizophrenia: can it explain auditory hallucinations?Int J Psychophysiol 58:179–189.CrossRefGoogle ScholarPubMed
Foxe, J. J., Murray, M. M., and Javitt, D. C. (2005). Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15:1914–1927.CrossRefGoogle ScholarPubMed
Friedman, J. I. (2004). Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology 174:45–53.CrossRefGoogle ScholarPubMed
Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563.CrossRefGoogle ScholarPubMed
Fries, P., Nikolic, D., and Singer, W. (2007). The gamma cycle. Trends Neurosci 30:309–316.CrossRefGoogle ScholarPubMed
Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand (Suppl) 395:68–79.CrossRefGoogle ScholarPubMed
Friston, K. (2005). Disconnection and cognitive dysmetria in schizophrenia. Am J Psychiat 162:429–432.CrossRefGoogle Scholar
Fuster, J. M. (1997). Network memory. Trends Neurosci 20:451–459.CrossRefGoogle ScholarPubMed
Galambos, R. (1992). A comparison of certain gamma band (40-Hz) brain rhythms in cat and man. In: Induced Rhythms in the Brain, ed. Basar, E. and Bullock, T. H., pp. 201–216. Boston, MA: Birkhauser.CrossRefGoogle Scholar
Galambos, R., Makeig, S., and Talmachoff, P. J. (1981). A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647.CrossRefGoogle ScholarPubMed
Gallinat, J., Winterer, G., Herrmann, C. S., and Senkowski, D. (2004). Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874.CrossRefGoogle ScholarPubMed
Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Muly, E. C., and Williams, G. V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301.CrossRefGoogle ScholarPubMed
Gray, C. M. and McCormick, D. A. (1996). Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113.CrossRefGoogle ScholarPubMed
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia?Am J Psychiat 153:321–330.Google Scholar
Green, M. F., Mintz, J., Salveson, D., et al. (2003). Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biol Psychiat 53:1113–1119.CrossRefGoogle Scholar
Gruber, T., Muller, M. M., Keil, A., and Elbert, T. (1999). Selective visual–spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 110:2074–2085.CrossRefGoogle ScholarPubMed
Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835.CrossRefGoogle ScholarPubMed
Haenschel, C., Bittner, R. A., Haertling, F., et al. (2007). Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiat 64:1229–1240.CrossRefGoogle ScholarPubMed
Haig, A. R., Gordon, E., Pascalis, V., et al. (2000). Gamma activity in schizophrenia: evidence of impaired network binding?Clin Neurophysiol 111:1461–1468.CrossRefGoogle ScholarPubMed
Hari, R., Hamalainen, M., and Joutsiniemi, S. L. (1989). Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039.CrossRefGoogle ScholarPubMed
Harris, J. G., Kongs, S., Allensworth, D., et al. (2004). Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385.CrossRefGoogle Scholar
Heresco-Levy, U., Silipo, G., and Javitt, D. C. (1996). Glycinergic augmentation of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. Psychopharmacol Bull 32:731–740.Google ScholarPubMed
Herrmann, C. S., Mecklinger, A., and Pfeifer, E. (1999). Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642.CrossRefGoogle Scholar
Herrmann, C. S., Munk, M. H., and Engel, A. K. (2004). Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355.CrossRefGoogle ScholarPubMed
Hong, L. E., Summerfelt, A., McMahon, R. P., Thaker, G. K., and Buchanan, R. W. (2004a). Gamma/beta oscillation and sensory gating deficit in schizophrenia. Neuroreport 15:155–159.CrossRefGoogle Scholar
Hong, L. E., Summerfelt, A., McMahon, R., et al. (2004b). Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 70:293–302.CrossRefGoogle Scholar
Humphries, C., Mortimer, A., Hirsch, S., and Belleroche, J. (1996). NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport 7:2051–2055.CrossRefGoogle Scholar
Jacobsen, L. K., D'Souza, D. C., Mencl, W. E., et al. (2004). Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiat 55:850–858.CrossRefGoogle Scholar
Javitt, D. C. and Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308.Google ScholarPubMed
Jensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399.CrossRefGoogle Scholar
Kopell, N., Ermentrout, G. B., Whittington, M. A., and Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97:1867–1872.CrossRefGoogle ScholarPubMed
Krishnan, G. P., Vohs, J. L., Hetrick, W. P., et al. (2005). Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 116:614–624.CrossRefGoogle Scholar
Krystal, J. H., Karper, L. P., Seibyl, J. P., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiat 51:199–214.CrossRefGoogle ScholarPubMed
Kwon, J. S., O'Donnell, B. F., Wallenstein, G. V., et al. (1999). Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiat 56:1001–1005.CrossRefGoogle Scholar
Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring phase synchrony in brain signals. Hum Brain Map 8:194–208.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lasser, K., Boyd, J. W., Woolhandler, S., et al. (2000). Smoking and mental illness: A population-based prevalence study. J Am Med Assoc 284:2606–2610.CrossRefGoogle ScholarPubMed
Lee, K. H., Williams, L. M., Haig, A., Goldberg, E., and Gordon, E. (2001). An integration of 40 Hz Gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 112:1499–1507.CrossRefGoogle Scholar
Lee, K. H., Williams, L. M., Breakspear, M., and Gordon, E. (2003). Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 41:57–78.CrossRefGoogle Scholar
Lee, S. H., Wynn, J. K., Green, M. F., et al. (2006). Quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging of patients with persistent auditory hallucinations. Schizophr Res 83:111–119.CrossRefGoogle ScholarPubMed
Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324.CrossRefGoogle Scholar
Light, G. A., Hsu, J. L., Hsieh, M. H., et al. (2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiat 60:1231–1240.CrossRefGoogle ScholarPubMed
Llinas, R. and Ribary, U. (1993). Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2081.CrossRefGoogle ScholarPubMed
Malhotra, A. K., Pinals, D. A., Weingartner, H., et al. (1996). NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307.CrossRefGoogle ScholarPubMed
Martin, L. F., Kem, W. R., and Freedman, R. (2004). Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174:54–64.CrossRefGoogle ScholarPubMed
Masterson, E. and O'Shea, B. (1984). Smoking and malignancy in schizophrenia. Br J Psychiat 145:429–432.CrossRefGoogle Scholar
Mesulam, M. (1994). Neurocognitive networks and selectively distributed processing. Rev Neurol 150:564–569.Google ScholarPubMed
Myers, C. S., Robles, O., Kakoyannis, A. N., et al. (2004). Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology 174:334–340.CrossRefGoogle ScholarPubMed
Pantev, C. (1995). Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330.CrossRefGoogle ScholarPubMed
Pantev, C., Makeig, S., Hoke, M., et al. (1991). Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci USA 88:8996–9000.CrossRefGoogle ScholarPubMed
Phillips, W. A. and Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26:65–82; discussion 82–137.CrossRefGoogle Scholar
Rodriguez, E., George, N., Lachaux, J. P., et al. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430–433.CrossRefGoogle ScholarPubMed
Rodriguez, R., Kallenbach, U., Singer, W., and Munk, M. H. (2004). Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 24:10 369–10 378.CrossRefGoogle Scholar
Sawaguchi, T. and Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950.CrossRefGoogle ScholarPubMed
Sawaguchi, T. and Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528.CrossRefGoogle ScholarPubMed
Saykin, A. J., Shtasel, D. L., Gur, R. E., et al. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiat 51:124–131.CrossRefGoogle ScholarPubMed
Schack, B., Vath, N., Petsche, H., Geissler, H. G., and Moller, E. (2002). Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol 44:143–163.CrossRefGoogle ScholarPubMed
Schmiedt, C., Brand, A., Hildebrandt, H., and Basar-Eroglu, C. (2005). Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls. Brain Res Cogn Brain Res 25:936–947.CrossRefGoogle ScholarPubMed
Schnitzler, A. and Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296.CrossRefGoogle Scholar
Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., and Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci 23:10 809–10 814.CrossRefGoogle ScholarPubMed
Silberstein, R. B., Ciorciari, J., and Pipingas, A. (1995). Steady-state visually evoked potential topography during the Wisconsin card sorting test. Electroencephalogr Clin Neurophysiol 96:24–35.CrossRefGoogle ScholarPubMed
Singer, W. (1999). Neuronal synchrony: a versatile code of the definition of relations?Neuron 24:49–65.CrossRefGoogle ScholarPubMed
Singer, W. and Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586.CrossRefGoogle ScholarPubMed
Slewa-Younan, S., Gordon, E., Harris, A. W., et al. (2004). Sex differences in functional connectivity in first-episode and chronic schizophrenia patients. Am J Psychiat 161:1595–1602.CrossRefGoogle ScholarPubMed
Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., et al. (2003). Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411.CrossRefGoogle Scholar
Spencer, K. M., Nestor, P. G., Perlmutter, R., et al. (2004). Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101:17 288–17 293.CrossRefGoogle ScholarPubMed
Symond, M. P., Harris, A. W., Gordon, E., and Williams, L. M. (2005). “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity?Am J Psychiat 162:459–465.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. and Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Mandon, S., Freiwald, W. A., and Kreiter, A. K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720.CrossRefGoogle Scholar
Tiitinen, H., Sinkkonen, J., Reinikainen, K., et al. (1993). Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60.CrossRefGoogle ScholarPubMed
Traub, R. D. and Whittington, M. A. (1999). Fast Oscillations in Cortical Circuits. Cambridge, MA: MIT Press.Google Scholar
Traub, R. D., Whittington, M. A., Buhl, E. H., Jefferys, J. G. and Faulkner, H. J. (1999). On the mechanism of the gamma → beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J Neurosci 19:1088–1105.CrossRefGoogle ScholarPubMed
Traub, R. D., Bibbig, A., LeBeau, F. E., Buhl, E. H., and Whittington, M. A. (2004). Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci 27:247–278.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J. and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Linden, D. E., Singer, W., et al. (2006). Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. J Neurosci 26:8168–8175.CrossRefGoogle Scholar
Stelt, O., Belger, A., and Lieberman, J. A. (2004). Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proc Natl Acad Sci USA 101:17 567–17 568.CrossRefGoogle Scholar
Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brain web: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239.CrossRefGoogle Scholar
Vernon, D., Haenschel, C., Dwivedi, P., and Gruzelier, J. (2005). Slow habituation of induced gamma and beta oscillations in association with unreality experiences in schizotypy. Int J Psychophysiol 56:15–24.CrossRefGoogle ScholarPubMed
Stein, A. and Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313.CrossRefGoogle Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiat 44:660–669.CrossRefGoogle ScholarPubMed
Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615.CrossRefGoogle ScholarPubMed
Winterer, G. and Weinberger, D. R. (2004). Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690.CrossRefGoogle Scholar
Winterer, G., Coppola, R., Goldberg, T. E., et al. (2004). Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiat 161:490–500.CrossRefGoogle ScholarPubMed
Winterer, G., Egan, M. F., Kolachana, B. S., et al. (2006). Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia. Biol Psychiat 60:578–584.CrossRefGoogle Scholar
Wynn, J. K., Light, G. A., Breitmeyer, B., Nuechterlein, K. H., and Green, M. F. (2005). Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiat 162:2330–2336.CrossRefGoogle ScholarPubMed
Yuval-Greenberg, S. and Deouell, L. Y. (2007). What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition. J Neurosci 27:1090–1096.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×