Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T23:11:14.035Z Has data issue: false hasContentIssue false

17 - Zebrafish models of retinal development and disease

Published online by Cambridge University Press:  22 August 2009

James M. Fadool
Affiliation:
Department of Biological Science, Florida State University, 235 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA
John E. Dowling
Affiliation:
Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

The zebrafish (Danio rerio; Brachydanio rerio in older literature) has become a powerful model system to study genetic mechanisms of vertebrate development and disease. Much of the current success can be traced back to the pioneering work of George Streisinger and colleagues at the University of Oregon. Like many of his peers, Streisinger had an acclaimed research programme on phage genetics but sought a eukaryotic system to expand further the known roles of genes in biological processes. Whereas Seymour Benzer focused his efforts on Drosophila and Sydney Brenner (Brenner, 1974) adopted the nematode worm, Streisinger, a fish hobbiest, turned his efforts towards the zebrafish (Streisinger et al., 1981; Chakrabarti et al., 1983; Walker and Streisinger, 1983; Grunwald and Streisinger, 1992). Streisinger first recognized many of the oft-cited advantages for the use of zebrafish as a genetic model (Mullins and Nusslein-Volhard, 1993; Driever et al., 1994; Solnica-Krezel et al., 1994). Zebrafish, small freshwater teleosts, are easily adapted to the laboratory setting and can be maintained in a relatively small space. The fish typically reach sexual maturity in 3 to 4 months, and a breeding pair of fish can produce >200 fertilized eggs per mating. Fertilization is external, and the egg and embryo are transparent, facilitating visual identification of morphogenetic movements and organogenesis with a standard dissecting microscope. Development is rapid; by 24 hours post-fertilization (hpf) all of the major organ systems have formed and spontaneous muscle flexures soon begin.

Type
Chapter
Information
Retinal Development , pp. 342 - 370
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, I., Dooley, C. M. and Polk, D. L. (1997). Delta-1 is a regulator of neurogenesis in the vertebrate retina. Dev. Biol. 185, 92–103CrossRefGoogle ScholarPubMed
Allende, M. L., Amsterdam, A., Becker, T.et al. (1996). Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Genes. Dev., 10, 3141–55CrossRefGoogle ScholarPubMed
Allwardt, B. A., Lall, A. B., Brockerhoff, S. E. and Dowling, J. E. (2001). Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J. Neurosci., 21, 2330–42CrossRefGoogle ScholarPubMed
Amsterdam, A., Nissen, R. M., Sun, Z.et al. (2004). Identification of 315 genes essential for early zebrafish development. Proc. Natl. Acad. Sci. U. S. A., 101, 12792–7CrossRefGoogle ScholarPubMed
Austin, C. P., Feldman, D. E., Ida, J. A., Jr, C. L. (1995). Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development, 121, 3637–50Google ScholarPubMed
Baier, H. and Copenhagen, D. (2000). Combining physiology and genetics in the zebrafish retina. J. Physiol., 524 Pt 1:1CrossRefGoogle ScholarPubMed
Baier, H., Klostermann, S., Trowe, T. et al. (1996). Genetic dissection of the retinotectal projection. Development, 123, 415–25Google ScholarPubMed
Baker, N. E., Mlodzik, M. and Rubin, G. M. (1990). Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science, 250, 1370–7CrossRefGoogle ScholarPubMed
Becker, T. S., Burgess, S. M., Amsterdam, A. H., Allende, M. L. and Hopkins, N. (1998). not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development, 125, 4369–78Google ScholarPubMed
Berson, E. L., Rosner, B., Weigel-DiFranco, C., Dryja, T. P. and Sandberg, M. A. (2002). Disease progression in patients with dominant retinitis pigmentosa and rhodopsin mutations. Invest. Ophthalmol. Vis. Sci., 43, 3027–36Google ScholarPubMed
Bilotta, J., Saszik, S. and Sutherland, S. E. (2001). Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev. Dyn., 222, 564–70CrossRefGoogle ScholarPubMed
Boonanuntanasarn, S., Yoshizaki, G. and Takeuchi, T. (2003). Specific gene silencing using small interfering RNAs in fish embryos. Biochem. Biophys. Res. Commun., 310, 1089–95CrossRefGoogle ScholarPubMed
Branchek, T. (1984). The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function. J. Comp. Neurol., 224, 116–22CrossRefGoogle ScholarPubMed
Branchek, T. and Bremiller, R. (1984). The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J. Comp. Neurol., 224, 107–15CrossRefGoogle ScholarPubMed
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94Google ScholarPubMed
Brockerhoff, S. E., Hurley, J. B., Janssen-Bienhold, U.et al. (1995). A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. U. S. A., 92, 10545–9CrossRefGoogle ScholarPubMed
Brockerhoff, S. E., Hurley, J. B., Niemi, G. A. and Dowling, J. E. (1997). A new form of inherited red-blindness identified in zebrafish. J. Neurosci., 17, 4236–42CrossRefGoogle ScholarPubMed
Brockerhoff, S. E., Rieke, F., Matthews, H. R.et al. (2003). Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J. Neurosci., 23, 470–80CrossRefGoogle ScholarPubMed
Brown, N. L., Kanekar, S., Vetter, M. L.et al. (1998). Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development, 125, 4821–33Google ScholarPubMed
Bultman, S., Gebuhr, T., Yee, D.et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell, 6, 1287–95CrossRefGoogle ScholarPubMed
Burnside, B. (2001). Light and circadian regulation of retinomotor movement. Prog. Brain Res., 131, 477–85CrossRefGoogle ScholarPubMed
Burrill, J. D., Easter, S. S. Jr. (1995). The first retinal axons and their microenvironment in zebrafish: cryptic pioneers and the pretract. J. Neurosci., 15, 2935–47CrossRefGoogle ScholarPubMed
Cagan, R. L. and Ready, D. F. (1989). Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev., 3, 1099–112CrossRefGoogle ScholarPubMed
Cameron, D. A. and Carney, L. H. (2000). Cell mosaic patterns in the native and regenerated inner retina of zebrafish: implications for retinal assembly. J. Comp. Neurol., 416, 356–673.0.CO;2-M>CrossRefGoogle ScholarPubMed
Chakrabarti, S., Streisinger, G., Singer, F. and Walker, C. (1983). Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics, 103, 109–36Google ScholarPubMed
Connaughton, V. P. and Nelson, R. (2000). Axonal stratification patterns and glutamate-gated conductance mechanisms in zebrafish retinal bipolar cells. J. Physiol., 524 Pt 1, 135–46CrossRefGoogle ScholarPubMed
Connaughton, V. P., Graham, D. and Nelson, R. (2004). Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J. Comp. Neurol., 477, 371–85CrossRefGoogle ScholarPubMed
Cook, J. E. and Chalupa, L. M. (2000). Retinal mosaics: new insights into an old concept. Trends Neurosci., 23, 26–34CrossRefGoogle ScholarPubMed
Dodd, A., Chambers, S. P. and Love, D. R. (2004). Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett., 561, 89–93CrossRefGoogle ScholarPubMed
Doerre, G. and Malicki, J. (2001). A mutation of early photoreceptor development, mikre oko, reveals cell–cell interactions involved in the survival and differentiation of zebrafish photoreceptors. J. Neurosci., 21, 6745–57CrossRefGoogle ScholarPubMed
Doerre, G. and Malicki, J. (2002). Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech. Dev., 110, 125–38CrossRefGoogle ScholarPubMed
Dosch, R., Wagner, D. S., Mintzer, K. A.et al. (2004). Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev. Cell, 6, 771–80CrossRefGoogle ScholarPubMed
Driever, W., Stemple, D., Schier, A. and Solnica-Krezel, L. (1994). Zebrafish: genetic tools for studying vertebrate development. Trends Genet., 10, 152–59CrossRefGoogle ScholarPubMed
Driever, W., Solnica-Krezel, L., Schier, A. F.et al. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 123, 37–46Google ScholarPubMed
Dryja, T. P., McGee, T. L., Hahn, L. B.et al. (1990a). Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. New Engl. J. Med., 323, 1302–7CrossRefGoogle Scholar
Dryja, T. P., McGee, T. L., Reichel, E.et al. (1990b). A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 343, 364–6CrossRefGoogle Scholar
Easter, S. S. Jr and Nicola, G. N. (1996). The development of vision in the zebrafish (Danio rerio). Dev. Biol., 180, 646–63CrossRefGoogle Scholar
Easter, S. S. Jr and Nicola, G. N. (1997). The development of eye movements in the zebrafish (Danio rerio). Dev. Psychobiol., 31, 267–763.0.CO;2-P>CrossRefGoogle Scholar
Eglen, S. J., Ooyen, A. and Willshaw, D. J. (2000). Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics. Network: Comput. Neural Syst., 11, 103–18CrossRefGoogle ScholarPubMed
Fadool, J. M. (2003). Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev. Biol., 258, 277–90CrossRefGoogle ScholarPubMed
Fadool, J. M., Brockerhoff, S. E., Hyatt, G. A. and Dowling, J. E. (1997). Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev. Genet., 20, 288–953.0.CO;2-4>CrossRefGoogle Scholar
Gaiano, N., Amsterdam, A., Kawakami, K.et al. (1996). Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature, 383, 829–32CrossRefGoogle ScholarPubMed
Galli-Resta, L. (2002). Putting neurons in the right places: local interactions in the genesis of retinal architecture. Trends Neurosci., 25, 638–43CrossRefGoogle ScholarPubMed
Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. and Lichtman, J. W. (2000). Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron, 27, 219–25CrossRefGoogle ScholarPubMed
Golling, G., Amsterdam, A., Sun, Z.et al. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet., 31, 135–40CrossRefGoogle ScholarPubMed
Gregg, R. G., Willer, G. B., Fadool, J. M., Dowling, J. E. and Link, B. A. (2003). Positional cloning of the young mutation identifies an essential role for the Brahma chromatin re-modeling complex in mediating retinal cell differentiation. Proc. Natl. Acad. Sci. U. S. A., 100, 6535–40CrossRefGoogle Scholar
Gross, J. M., Perkins, B. D., Amsterdam, A.et al. (2005). Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics, 170, 245–61CrossRefGoogle ScholarPubMed
Grunwald, D. J. and Streisinger, G. (1992). Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet. Res., 59, 103–16CrossRefGoogle ScholarPubMed
Haffter, P., Granato, M., Brand, M.et al. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 123, 1–36Google ScholarPubMed
Henikoff, S., Till, B. J. and Comai, L. (2004). TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol., 135, 630–6CrossRefGoogle ScholarPubMed
Holzschuh, J., Hauptmann, G. and Driever, W. (2003). Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J. Neurosci., 23, 5507–19CrossRefGoogle ScholarPubMed
Hu, M. and Easter, S. S. (1999). Retinal neurogenesis: the formation of the initial central patch of post-mitotic cells. Dev. Biol., 207, 309–21CrossRefGoogle Scholar
Hyatt, G. A. and Dowling, J. E. (1997). Retinoic acid. A key molecule for eye and photoreceptor development. Invest. Ophthalmol. Vis. Sci., 38, 1471–5Google ScholarPubMed
Hyatt, G. A., Schmitt, E. A., Marsh-Armstrong, N. R. and Dowling, J. E. (1992). Retinoic acid-induced duplication of the zebrafish retina. Proc. Natl. Acad. Sci. U. S. A., 89, 8293–7CrossRefGoogle ScholarPubMed
Hyatt, G. A., Schmitt, E. A., Fadool, J. M. and Dowling, J. E. (1996a). Retinoic acid alters photoreceptor development in vivo. Proc. Natl. Acad. Sci. U. S. A., 93, 13298–303CrossRefGoogle Scholar
Hyatt, G. A., Schmitt, E. A., Marsh-Armstrong, N.et al. (1996b). Retinoic acid establishes ventral retinal characteristics. Development, 122, 195–204Google Scholar
Jensen, A. M. and Westerfield, M. (2004). Zebrafish mosaic eyes is a novel FERM protein required for retinal lamination and retinal pigmented epithelial tight junction formation. Curr. Biol., 14, 711–17CrossRefGoogle ScholarPubMed
Jensen, A. M., Walker, C. and Westerfield, M. (2001). mosaic eyes: a zebrafish gene required in pigmented epithelium for apical localization of retinal cell division and lamination. Development, 128, 95–105Google ScholarPubMed
Johns, P. R. (1982). Formation of photoreceptors in larval and adult goldfish. J. Neurosci., 2, 178–98CrossRefGoogle ScholarPubMed
Kainz, P. M., Adolph, A. R., Wong, K. Y. and Dowling, J. E. (2003). Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness. J. Comp. Neurol., 463, 265–80CrossRefGoogle ScholarPubMed
Karlstrom, R. O., Trowe, T., Klostermann, S.et al. (1996). Zebrafish mutations affecting retinotectal axon pathfinding. Development, 123, 427–38Google ScholarPubMed
Kay, J. N., Finger-Baier, K. C., Roeser, T., Staub, W. and Baier, H. (2001). Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron, 30, 725–736CrossRefGoogle ScholarPubMed
Kljavin, I. J. (1987). Early development of photoreceptors in the ventral retina of the zebrafish embryo. J. Comp. Neurol., 260, 461–71CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R., Ahnelt, P. and Cuenca, N. (2001). Cellular organization of the vertebrate retina. Prog. Brain Res., 131, 3–26CrossRefGoogle ScholarPubMed
Larison, K. D. and Bremiller, R. (1990). Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development, 109, 567–76Google ScholarPubMed
Levine, E. M., Fuhrmann, S. and Reh, T. A. (2000). Soluble factors and the development of rod photoreceptors. Cell Mol. Life Sci., 57, 224–34CrossRefGoogle ScholarPubMed
Li, L. and Dowling, J. E. (1997). A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc. Natl. Acad. Sci. U. S. A., 94, 11645–50CrossRefGoogle ScholarPubMed
Lin, B., Wang, S. W. and Masland, R. H. (2004). Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron, 43, 475–85CrossRefGoogle ScholarPubMed
Lin, S., Gaiano, N., Culp, P.et al. (1994). Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science, 265, 666–9CrossRefGoogle ScholarPubMed
Link, B. A., Fadool, J. M., Malicki, J. and Dowling, J. E. (2000). The zebrafish young mutation acts non-cell-autonomously to uncouple differentiation from specification for all retinal cells. Development, 127, 2177–88Google ScholarPubMed
Lister, J. A., Close, J. and Raible, D. W. (2001). Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev. Biol., 237, 333–44CrossRefGoogle ScholarPubMed
Liu, Y., Shen, Y., Rest, J. S., Raymond, P. A. and Zack, D. J. (2001). Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene. Invest. Ophthalmol. Vis. Sci., 42, 481–7Google ScholarPubMed
Loosli, F., Koster, R. W., Carl, M., Krone, A. and Wittbrodt, J. (1998). Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech. Dev., 74, 159–64CrossRefGoogle ScholarPubMed
Loosli, F., Winkler, S. and Wittbrodt, J. (1999). Six3 over-expression initiates the formation of ectopic retina. Genes Dev., 13, 649–54CrossRefGoogle Scholar
Loosli, F., Staub, W., Finger-Baier, K. C.et al. (2003). Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep., 4, 894–9CrossRefGoogle ScholarPubMed
Maaswinkel, H., Ren, J. Q. and Li, L. (2003). Slow-progressing photoreceptor cell degeneration in night blindness c mutant zebrafish. J. Neurocytol., 32, 1107–16CrossRefGoogle ScholarPubMed
Macdonald, R., Barth, K. A., Xu, Q.et al. (1995). Midline signaling is required for Pax gene regulation and patterning of the eyes. Development, 121, 3267–78Google ScholarPubMed
Maden, M. and Holder, N. (1992). Retinoic acid and development of the central nervous system. BioEssays, 14, 431–8CrossRefGoogle ScholarPubMed
Malicki, J. (2000). Harnessing the power of forward genetics–analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci., 23, 531–41CrossRefGoogle ScholarPubMed
Malicki, J., Neuhauss, S. C., Schier, A. F.et al. (1996). Mutations affecting development of the zebrafish retina. Development, 123, 263–73Google ScholarPubMed
Malicki, J., Jo, H., Wei, X., Hsiung, M. and Pujic, Z. (2002). Analysis of gene function in the zebrafish retina. Methods, 28, 427–38CrossRefGoogle ScholarPubMed
Malicki, J., Jo, H. and Pujic, Z. (2003). Zebrafish, N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev. Biol., 259, 95–108CrossRefGoogle ScholarPubMed
Mangrum, W. I., Dowling, J. E. and Cohen, E. D. (2002). A morphological classification of ganglion cells in the zebrafish retina. Vis. Neurosci., 19, 767–79CrossRefGoogle ScholarPubMed
Marc, R. E. and Cameron, D. (2001). A molecular phenotype atlas of the zebrafish retina. J. Neurocytol., 30, 593–654CrossRefGoogle ScholarPubMed
Marsh-Armstrong, N., McCaffery, P., Gilbert, W., Dowling, J. E. and Drager, U. C. (1994). Retinoic acid is necessary for development of the ventral retina in zebrafish. Proc. Natl. Acad. Sci. U. S. A., 91, 7286–90CrossRefGoogle ScholarPubMed
Masai, I., Lele, Z., Yamaguchi, M.et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development, 130, 2479–94CrossRefGoogle ScholarPubMed
Masland, R. H. (2001). The fundamental plan of the retina. Nat. Neurosci., 4, 877–86CrossRefGoogle ScholarPubMed
Matthews, H. R. and Fain, G. L. (2001). A light-dependent increase in free Ca2+ concentration in the salamander rod outer segment. J. Physiol., 532, 305–21CrossRefGoogle ScholarPubMed
Matthews, H. R. and Fain, G. L. (2002). Time course and magnitude of the calcium release induced by bright light in salamander rods. J. Physiol., 542, 829–41CrossRefGoogle ScholarPubMed
McCallum, C. M., Comai, L., Greene, E. A. and Henikoff, S. (2000). Targeted screening for induced mutations. Nat. Biotechnol., 18, 455–7CrossRefGoogle ScholarPubMed
McMahon, D. G. (1994). Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells. J. Neurosci., 14, 1722–34CrossRefGoogle ScholarPubMed
McWilliam, P., Farrar, G. J., Kenna, P.et al. (1989). Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics, 5, 619–622CrossRefGoogle Scholar
Morris, A. C. and Fadool, J. M. (2005). Studying rod photoreceptor development in zebrafish. Physiol. Behav., 86, 306–13CrossRefGoogle ScholarPubMed
Mullins, M. C. and Nusslein-Volhard, C. (1993). Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr. Opin. Genet. Dev., 3, 648–54CrossRefGoogle ScholarPubMed
Nasevicius, A. and Ekker, S. C. (2000). Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet., 26, 216–20CrossRefGoogle ScholarPubMed
Neuhauss, S. C., Biehlmaier, O., Seeliger, M. W.et al. (1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci., 19, 8603–15CrossRefGoogle ScholarPubMed
Neumann, C. J. and Nuesslein-Volhard, C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science, 289, 2137–39CrossRefGoogle ScholarPubMed
Nornes, S., Clarkson, M., Mikkola, I.et al. (1998). Zebrafish contains two pax6 genes involved in eye development. Mech. Dev., 77, 185–96CrossRefGoogle ScholarPubMed
Novelli, E., Resta, V. and Galli-Resta, L. (2004). Mechanisms controlling the formation of retinal mosaics. Prog. Brain Res., 147, 141–53CrossRefGoogle Scholar
Olave, I., Wang, W., Xue, Y., Kuo, A. and Crabtree, G. R. (2002). Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev., 16, 2509–17CrossRefGoogle ScholarPubMed
Otteson, D. C. and Hitchcock, P. F. (2003). Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vis. Res., 43, 927–36CrossRefGoogle ScholarPubMed
Otteson, D. C., Costa, D' A. R. and Hitchcock, P. F. (2001). Putative stem cells and the lineage of rod photoreceptors in the mature retina of the goldfish. Dev. Biol., 232, 62–76CrossRefGoogle ScholarPubMed
Papermaster, D. S. (1995). Necessary but insufficient. Nat. Med., 1, 874–75CrossRefGoogle ScholarPubMed
Perkins, B. D., Kainz, P. M., Malley, O' D. M. and Dowling, J. E. (2002). Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors. Vis. Neurosci., 19, 257R–64RCrossRefGoogle ScholarPubMed
Peterson, R. E., Fadool, J. M., McClintock, J. and Linser, P. J. (2001). Müller cell differentiation in the zebrafish neural retina: evidence of distinct early and late stages in cell maturation. J. Comp. Neurol., 429, 530–403.0.CO;2-C>CrossRefGoogle ScholarPubMed
Peterson, R. T., Link, B. A., Dowling, J. E. and Schreiber, S. L. (2000). Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. U. S. A., 97, 12965–9CrossRefGoogle ScholarPubMed
Peterson, R. T., Mably, J. D., Chen, J. N. and Fishman, M. C. (2001). Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol., 11, 1481–91CrossRefGoogle ScholarPubMed
Peterson, R. T., Shaw, S. Y., Peterson, T. A.et al. (2004). Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol., 22, 595–9CrossRefGoogle Scholar
Raymond, P. A. and Rivlin, P. K. (1987). Germinal cells in the goldfish retina that produce rod photoreceptors. Dev. Biol., 122, 120–38CrossRefGoogle ScholarPubMed
Raymond, P. A., Barthel, L. K., Rounsifer, M. E., Sullivan, S. A. and Knight, J. K. (1993). Expression of rod and cone visual pigments in goldfish and zebrafish: a rhodopsin-like gene is expressed in cones. Neuron, 10, 1161–74CrossRefGoogle ScholarPubMed
Raymond, P. A., Barthel, L. K. and Curran, G. A. (1995). Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. J. Comp. Neurol., 359, 537–50CrossRefGoogle ScholarPubMed
Rick, J. M., Horschke, I. and Neuhauss, S. C. (2000). Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae. Curr. Biol., 10, 595–8CrossRefGoogle ScholarPubMed
Rivolta, C., Sharon, D., DeAngelis, M. M. and Dryja, T. P. (2002). Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet., 11, 1219–27CrossRefGoogle ScholarPubMed
Robinson, J., Schmitt, E. A., Harosi, F. I., Reece, R. J. and Dowling, J. E. (1993). Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc. Natl. Acad. Sci. U. S. A., 90, 6009–12CrossRefGoogle ScholarPubMed
Rockhill, R. L., Euler, T. and Masland, R. H. (2000). Spatial order within but not between types of retinal neurons. Proc. Natl. Acad. Sci. U. S. A., 97, 2303–7CrossRefGoogle Scholar
Roeser, T. and Baier, H. (2003). Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J. Neurosci., 23, 3726–34CrossRefGoogle ScholarPubMed
Ross, S. A., McCaffery, P. J., Drager, U. C. and De, Luca L. M. (2000). Retinoids in embryonal development. Physiol. Rev., 80, 1021–54CrossRefGoogle ScholarPubMed
Saszik, S., Bilotta, J. and Givin, C. M. (1999). ERG assessment of zebrafish retinal development. Vis. Neurosci., 16, 881–8CrossRefGoogle ScholarPubMed
Schmitt, E. A. and Dowling, J. E. (1994). Early eye morphogenesis in the zebrafish, Brachydanio rerio. J. Comp. Neurol., 344, 532–42CrossRefGoogle ScholarPubMed
Schmitt, E. A. and Dowling, J. E. (1996). Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J. Comp. Neurol., 371, 222–343.0.CO;2-4>CrossRefGoogle ScholarPubMed
Schmitt, E. A. and Dowling, J. E. (1999). Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol., 404, 515–363.0.CO;2-A>CrossRefGoogle ScholarPubMed
Seo, H. C., Drivenes, , Ellingsen, S. and Fjose, A. (1998). Expression of two zebrafish homologs of the murine Six3 gene demarcates the initial eye primordia. Mech. Dev., 73, 45–57CrossRefGoogle Scholar
Seo, S., Richardson, G. A. and Kroll, K. L. (2005). The SWI/SNF chromatin re-modeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development, 132, 105–15CrossRefGoogle Scholar
Shkumatava, A., Fischer, S., Muller, F., Strahle, U. and Neumann, C. J. (2004). Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development, 131, 3849–58CrossRefGoogle ScholarPubMed
Solnica-Krezel, L., Schier, A. F. and Driever, W. (1994). Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics, 136, 1401–20Google ScholarPubMed
Starr, C. J., Kappler, J. A., Chan, D. K., Kollmar, R. and Hudspeth, A. J. (2004). Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells. Proc. Natl. Acad. Sci. U. S. A., 101, 2572–7CrossRefGoogle ScholarPubMed
Streisinger, G., Walker, C., Dower, N., Knauber, D. and Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 291, 293–6CrossRefGoogle Scholar
Taylor, M. R., Hurley, J. B., Epps, H. A. and Brockerhoff, S. E. (2004). A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc. Natl. Acad. Sci. U. S. A., 101, 4584–9CrossRefGoogle ScholarPubMed
Taylor, M. R., Kikkawa, S., Diez-Juan, A.et al. (2005). The zebrafish pob gene encodes a novel protein required for survival of red cone photoreceptor cells. Genetics, 170, 263–73CrossRefGoogle ScholarPubMed
Till, B. J., Reynolds, S. H., Weil, C.et al. (2004). Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol., 4, 12CrossRefGoogle ScholarPubMed
Trowe, T., Klostermann, S., Baier, H.et al. (1996). Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development, 123, 439–50Google ScholarPubMed
Tsujikawa, M. and Malicki, J. (2004). Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron, 42, 703–16CrossRefGoogle ScholarPubMed
Urtishak, K. A., Choob, M., Tian, X.et al. (2003). Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev. Dyn., 228, 405–13CrossRefGoogle ScholarPubMed
Epps, H. A., Hayashi, M., Lucast, L.et al. (2004). The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J. Neurosci., 24, 8641–50CrossRefGoogle ScholarPubMed
Vihtelic, T. S., Yamamoto, Y., Sweeney, M. T., Jeffery, W. R. and Hyde, D. R. (2001). Arrested differentiation and epithelial cell degeneration in zebrafish lens mutants. Dev. Dyn., 222, 625–36CrossRefGoogle ScholarPubMed
Wagner, D. S., Dosch, R., Mintzer, K. A., Wiemelt, A. P. and Mullins, M. C. (2004). Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev. Cell., 6, 781–90CrossRefGoogle ScholarPubMed
Waid, D. K. and McLoon, S. C. (1998). Ganglion cells influence the fate of dividing retinal cells in culture. Development, 125, 1059–66Google ScholarPubMed
Walker, C. and Streisinger, G. (1983). Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics, 103, 125–36Google ScholarPubMed
Wargelius, A., Seo, H. C., Austbo, L. and Fjose, A. (2003). Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochem. Biophys. Res. Commun., 309, 475–81CrossRefGoogle ScholarPubMed
Wässle, H. and Riemann, H. J. (1978). The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. London B Biol. Sci., 200, 441–61CrossRefGoogle ScholarPubMed
Wei, X. and Malicki, J. (2002). nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat. Genet., 31, 150–7CrossRefGoogle ScholarPubMed
Wei, X., Cheng, Y., Luo, Y.et al. (2004). The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Dev. Biol., 269, 286–301CrossRefGoogle ScholarPubMed
Wickstrom, E., Choob, M., Urtishak, K. A.et al. (2004a). Sequence specificity of alternating hydroyprolyl/phosphono peptide nucleic acids against zebrafish embryo mRNAs. J. Drug Target., 12, 363–72CrossRefGoogle Scholar
Wickstrom, E., Urtishak, K. A., Choob, M.et al. (2004b). Downregulation of gene expression with negatively charged peptide nucleic acids (PNAs) in zebrafish embryos. Methods Cell Biol., 77, 137–58CrossRefGoogle Scholar
Wienholds, E., Schulte-Merker, S., Walderich, B. and Plasterk, R. H. (2002). Target-selected inactivation of the zebrafish rag1 gene. Science, 297, 99–102CrossRefGoogle ScholarPubMed
Wienholds, E., Eeden, F., Kosters, M.et al. (2003). Efficient target-selected mutagenesis in zebrafish. Genome Res., 13, 2700–7CrossRefGoogle ScholarPubMed
Wong, K. Y., Gray, J., Hayward, C. J. C., Adolph, A. R. and Dowling, J. E. (2004). Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish, 1, 121–31CrossRefGoogle ScholarPubMed
Yazulla, S. and Studholme, K. M. (2001). Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. J. Neurocytol., 30, 551–92CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×