Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T02:39:25.256Z Has data issue: false hasContentIssue false

8 - Immunoglobulin and T-cell receptor gene rearrangements

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

Jacques J. M. van Dongen
Affiliation:
Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
Anton W. Langerak
Affiliation:
Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The ability of the immune system to specifically recognize millions of different antigens and antigenic epitopes is based on the enormous diversity (at least 10) of antigen-specific receptors, that is, surface membrane-bound immunoglobulin (SmIg) molecules on B lymphocytes and T-cell receptor (TCR) molecules on T lymphocytes. The antigen-specific receptors differ from lymphocyte to lymphocyte, but each single lymphocyte or lymphocyte clone expresses approximately 10 receptors with identical antigen specificity. The extensive diversity of the antigen-specific receptors of lymphocytes is based on rearrangement processes in the Ig/TCR-encoding genes.

Since the various types of lymphoid leukemias resemble normal lymphoid (precursor) cells, most lymphoid leukemias and lymphomas also contain rearranged IG/TCR genes. Being derived from a single malignantly transformed lymphoid cell, all cells of a lymphoid malignancy have their IG/TCR genes rearranged in an identical way. This information can be readily employed for clonality assessment in lymphoproliferations. We will discuss the IG/TCR gene rearrangement processes and the methods for detecting clonal IG/TCR gene rearrangements in various types of (childhood) leukemia. Finally, several applications of diagnostic clonality studies in childhood leukemia are presented.

IG/TCR gene rearrangement processes

Ig molecules and their encoding genes

Ig molecules consist of two disulfide-bonded Ig heavy (IgH) chains and two Ig light chains. The Ig class or subclass is determined by the isotype of the involved IgH chain, irrespective of the type of light chain. Each B lymphocyte or B-lymphocyte clone expresses only one type of light chain (Igκ or Igλ), whereas multiple IgH chains can be expressed.

Type
Chapter
Information
Childhood Leukemias , pp. 210 - 234
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borst, J., Brouns, G. S., de Vries, E.et al.Antigen receptors on T and B lymphocytes: parallels in organization and function. Immunol Rev, 1993; 132: 49–84.CrossRefGoogle Scholar
Owen, M. J. & Lamb, J. R., eds. Immune Recognition (Oxford, UK: IRL Press, 1988).Google Scholar
Dongen, J. J. M. & Wolvers-Tettero, I. L. M.Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta, 1991; 198: 1–91.CrossRefGoogle Scholar
Janossy, G., Bollum, F. J., Bradstock, K. F., & Ashley, J.Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood, 1980; 56: 430–41.Google ScholarPubMed
Foon, K. A. & Todd, R. F.Immunologic classification of leukemia and lymphoma. Blood, 1986; 68: 1–31.Google ScholarPubMed
Greaves, M. F.Differentiation-linked leukemogenesis in lymphocytes. Science, 1986; 234: 697–704.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Adriaansen, H. J., & Hooijkaas, H.Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med, 1988; 33: 298–314.Google ScholarPubMed
Dongen, J. J. M. & Wolvers-Tettero, I. L. M.Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta, 1991; 198: 93–174.CrossRefGoogle Scholar
Klaus, G. G. B.B lymphocytes (Oxford, UK: Oxford University Press, 1990).Google Scholar
Tonegawa, S.Somatic generation of antibody diversity. Nature, 1983; 302: 575–81.CrossRefGoogle ScholarPubMed
Davis, M. M. & Björkman, P. J.T-cell antigen receptor genes and T-cell recognition. Nature, 1988; 334: 395–402.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Comans-Bitter, W. M., Wolvers-Tettero, I. L. M., & Borst, J.Development of human T lymphocytes and their thymus-dependency. Thymus, 1990; 16: 207–34.Google Scholar
Chen, J. & Alt, F. W.Gene rearrangement and B-cell development. Curr Opin Immunol, 1993; 5: 194–200.CrossRefGoogle ScholarPubMed
Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T., & Leder, P.Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell, 1981; 27: 583–91.CrossRefGoogle Scholar
Ichihara, Y., Matsuoka, H., & Kurosawa, Y.Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J, 1988; 7: 4141–50.Google ScholarPubMed
Matsuda, F., Shi, E. K., Nagaoka, H., et al.Structure and physical map of 64 variable segments in the 3′0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet, 1993; 3: 88–94.CrossRefGoogle ScholarPubMed
Hieter, P. A., Max, E. E., Seidman, J. G., Maize, J. V. Jr., & Leder, P.Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell, 1980; 22: 197–207.CrossRefGoogle Scholar
Schäble, K. F. & Zachau, H. G.The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler, 1993; 374: 1001–22.Google ScholarPubMed
Vasicek, T. J. & Leder, P.Structure and expression of the human immunoglobulin lambda genes. J Exp Med, 1990; 172: 609–20.CrossRefGoogle ScholarPubMed
Bauer, T. R. Jr. & Blomberg, B.The human lambda L chain Ig locus. Recharacterization of JC lambda 6 and identification of a functional JC lambda 7. J Immunol, 1991; 146: 2813–20.Google ScholarPubMed
Williams, S. C. & Winter, G.Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur J Immunol, 1993; 23: 1456–61.CrossRefGoogle ScholarPubMed
Yoshikai, Y., Clark, S. P., Taylor, S., et al.Organization and sequences of the variable, joining and constant region genes of the human T-cell receptor alpha-chain. Nature, 1985; 316: 837–40.CrossRefGoogle ScholarPubMed
Griesser, H., Champagne, E., Tkachuk, D., et al.The human T cell receptor alpha-delta locus: a physical map of the variable, joining and constant region genes. Eur J Immunol, 1988; 18: 641–4.CrossRefGoogle Scholar
Toyonaga, B., Yoshikai, Y., Vadasz, V., Chin, B., & Mak, T. W.Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A, 1985; 82: 8624–8.CrossRefGoogle ScholarPubMed
Quertermous, T., Strauss, W. M., Dongen, J. J. M., & Seidman, J. G.Human T cell gamma chain joining regions and T cell development. J Immunol, 1987; 138: 2687–90.Google Scholar
Lefranc, M. P. & Rabbitts, T. H.The human T-cell receptor gamma (TRG) genes. Trends Biochem Sci, 1989; 14: 214–18.CrossRefGoogle ScholarPubMed
Zhang, X. M., Tonnelle, C., Lefranc, M. P., & Huck, S.T cell receptor gamma cDNA in human fetal liver and thymus: variable regions of gamma chains are restricted to V gamma I or V9, due to the absence of splicing of the V10 and V11 leader intron. Eur J Immunol, 1994; 24: 571–8.CrossRefGoogle ScholarPubMed
Takihara, Y., Tkachuk, D., Michalopoulo, E., et al.Sequence and organization of the diversity, joining, and constant region genes of the human T-cell delta-chain locus. Proc Natl Acad Sci U S A, 1988; 85: 6097–101.CrossRefGoogle ScholarPubMed
Breit, T. M., Wolvers-Tettero, I. L. M., Beishuizen, A., et al.Southern blot patterns, frequencies and junctional diversity of T-cell receptor D gene rearrangements in acute lymphoblastic leukemia. Blood, 1993; 82: 3063–74.Google ScholarPubMed
Davodeau, F., Peyrat, M. A., Hallet, M. M., Vie, H., & Bonneville, M.Characterization of a new functional TCR J delta segment in humans. Evidence for a marked conservation of J delta sequences between humans, mice, and sheep. J Immunol, 1994; 153: 137–42.Google Scholar
Schatz, D. G., Oettinger, M. A., & Baltimore, D.The V(D)J recombination activating gene, RAG-1. Cell, 1989; 59: 1035–48.CrossRefGoogle Scholar
Oettinger, M. A., Schatz, D. G., Gorka, C., & Baltimore, D.RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science, 1990; 248: 1517–23.CrossRefGoogle ScholarPubMed
McBlane, J. F., Gent, D. C., Ramsden, D. A., et al.Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell, 1995; 83: 387–95.CrossRefGoogle Scholar
Lieber, M. R.The mechanism of V(D)J recombination: a balance of diversity, specificity, and stability. Cell, 1992; 70: 873–6.CrossRefGoogle Scholar
Lieber, M. R. The role of site-directed recombinases in physiologic and pathologic chromosomal rearrangements. In , I. R. Kirsch, ed., The Causes and Consequences of Chromosomal Aberrations (Boca Raton, FL: CRC Press, 1993).Google Scholar
Gent, D. C., Ramsden, D. A., & Gellert, M.The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell, 1996; 85: 107–13.CrossRefGoogle Scholar
Lefranc, M. P.IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 2001; 29: 207–9.CrossRefGoogle ScholarPubMed
Alt, F. W., Blackwell, T. K., & Yancopoulos, G. D.Development of the primary antibody repertoire. Science, 1987; 238: 1079–87.CrossRefGoogle ScholarPubMed
Schroeder, H. W. Jr., Hillson, J. L., & Perlmutter, R. M.Early restriction of the human antibody repertoire. Science, 1987; 238: 791–3.CrossRefGoogle ScholarPubMed
Leiden, J. M., Dialynas, D. P., Duby, A. D., et al.Rearrangement and expression of T-cell antigen receptor genes in human T-lymphocyte tumor lines and normal human T-cell clones: evidence for allelic exclusion of Ti beta gene expression and preferential use of a J beta 2 gene segment. Mol Cell Biol, 1986; 6: 3207–14.CrossRefGoogle ScholarPubMed
Triebel, F. & Hercend, T.Subpopulations of human peripheral T gamma delta lymphocytes. Immunol Today, 1989; 10: 186–8.CrossRefGoogle ScholarPubMed
Borst, J., Wicherink, A., Dongen, J. J. M., et al.Non-random expression of T cell receptor gamma and delta variable gene segments in functional T lymphocyte clones from human peripheral blood. Eur J Immunol, 1989; 19: 1559–68.CrossRefGoogle ScholarPubMed
Breit, T. M., Wolvers-Tettero, I. L., & Dongen, J. J.. Unique selection determinant in polyclonal V delta 2-J delta 1 junctional regions of human peripheral gamma delta T lymphocytes. J Immunol, 1994; 152: 2860–4.Google ScholarPubMed
Desiderio, S. V., Yancopoulos, G. D., & Paskind, M., et al.Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature, 1984; 311: 752–5.CrossRefGoogle Scholar
Landau, N. R., Schatz, D. G., Rosa, M., & Baltimore, D.Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol, 1987; 7: 3237–43.CrossRefGoogle Scholar
Elliott, J. F., Rock, E. P., Patten, P. A., Davis, M. M., & Chien, Y. H.The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature, 1988; 331: 627–31.CrossRefGoogle ScholarPubMed
Breit, T. M., Wolvers-Tettero, I. L., Bogers, A. J., et al.Rearrangements of the human TCRD-deleting elements. Immunogenetics, 1994; 40: 70–5.CrossRefGoogle ScholarPubMed
Victor, K. D. & Capra, J. D.An apparently common mechanism of generating antibody diversity: length variation of the VL-JL junction. Mol Immunol, 1994; 31: 39–46.CrossRefGoogle ScholarPubMed
Reth, M. G., Jackson, S., & Alt, F. W.VHDJH formation and DJH replacement during pre-B differentiation: non-random usage of gene segments. EMBO J, 1986; 5: 2131–8.Google ScholarPubMed
Marolleau, J. P., Fondell, J. D., Malissen, M., et al.The joining of germ-line V alpha to J alpha genes replaces the preexisting V alpha-J alpha complexes in a T cell receptor alpha, beta positive T cell line. Cell, 1988; 55: 291–300.CrossRefGoogle Scholar
Reth, M., Gehrmann, P., Petrac, E., & Wiese, P.A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature, 1986; 322: 840–2.CrossRefGoogle ScholarPubMed
Kleinfield, R., Hardy, R. R., Tarlinton, D., et al.Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature, 1986; 322: 843–6.CrossRefGoogle Scholar
Covey, L. R., Ferrier, P., & Alt, F. W.VH to VHDJH rearrangement is mediated by the internal VH heptamer. Int Immunol, 1990; 2: 579–83.CrossRefGoogle ScholarPubMed
Fondell, J. D., Marolleau, J. P., Primi, D., & Marcu, K. B.On the mechanism of non-allelically excluded V alpha-J alpha T cell receptor secondary rearrangements in a murine T cell lymphoma. J Immunol, 1990; 144: 1094–103.Google Scholar
Berek, C. & Milstein, C.Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev, 1987; 96: 23–41.CrossRefGoogle ScholarPubMed
Rajewsky, K., Forster, I., & Cumano, A.Evolutionary and somatic selection of the antibody repertoire in the mouse. Science, 1987; 238: 1088–94.CrossRefGoogle ScholarPubMed
Raffeld, M., Wright, J. J., Lipford, E., et al.Clonal evolution of t(14;18) follicular lymphomas demonstrated by immunoglobulin genes and the 18q21 major breakpoint region. Cancer Res, 1987; 47: 2537–42.Google Scholar
Cleary, M. L., Galili, N., Trela, M., Levy, R., & Sklar, J.Single cell origin of bigenotypic and biphenotypic B cell proliferations in human follicular lymphomas. J Exp Med, 1988; 167: 582–97.CrossRefGoogle ScholarPubMed
Romanow, W. J., Langerak, A. W., Goebel, P., et al.E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell, 2000; 5: 343–53.CrossRefGoogle Scholar
Langerak, A. W., Wolvers-Tettero, I. L. M., Gastel-Mol, E. J., Oud, M. E., & Dongen, J. J. M.. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood, 2001; 98: 2456–65.CrossRefGoogle ScholarPubMed
Hieter, P. A., Korsmeyer, S. J., Waldmann, T. A., & Leder, P.Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature, 1981; 290: 368–72.CrossRefGoogle ScholarPubMed
Korsmeyer, S. J., Hieter, P. A., Sharrow, S. O., et al.Normal human B cells display ordered light chain gene rearrangements and deletions. J Exp Med, 1982; 156: 975–85.CrossRefGoogle Scholar
Klobeck, H. G. & Zachau, H. G.The human CK gene segment and the kappa deleting element are closely linked. Nucleic Acids Res, 1986; 14: 4591–603.CrossRefGoogle ScholarPubMed
Siminovitch, K. A., Bakhshi, A., Goldman, P., & Korsmeyer, S. J.A uniform deleting element mediates the loss of kappa genes in human B cells. Nature, 1985; 316: 260–2.CrossRefGoogle ScholarPubMed
Graninger, W. B., Goldman, P. L., Morton, C. C., O'Brien, S. J., & Korsmeyer, S. J.The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J Exp Med, 1988; 167: 488–501.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Krissansen, G. W., Wolvers-Tettero, I. L., et al.Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988; 71: 603–12.Google ScholarPubMed
Verschuren, M. C., Comans-Bitter, W. M., Kapteijn, C. A., et al.Transcription and protein expression of mb-1 and B29 genes in human hematopoietic malignancies and cell lines. Leukemia, 1993; 7: 1939–47.Google ScholarPubMed
Buccheri, V., Mihaljevic, B., Matutes, E., et al.Mb-1: a new marker for B-lineage lymphoblastic leukemia. Blood, 1993; 82: 853–7.Google ScholarPubMed
Gathings, W. E., Lawton, A. R., & Cooper, M. D.Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol, 1977; 7: 804–10.CrossRefGoogle ScholarPubMed
Vogler, L. B., Crist, W. M., Bockman, D. E., et al.Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med, 1978; 298: 872–8.CrossRefGoogle ScholarPubMed
Koehler, M., Behm, F. G., Shuster, J., et al.Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia, 1993; 7: 2064–8.Google ScholarPubMed
Melchers, F., Karasuyama, H., Haasner, D., et al.The surrogate light chain in B-cell development. Immunol Today, 1993; 14: 60–8.CrossRefGoogle ScholarPubMed
Dik, W. A., Pike-Overzet, K., Weerkamp, F., et al.New insights on human T-cell development by quantitative T-cell receptor gene rearrangement studies and gene expression profiling. J Exp Med, 2005; 201: 1715–23.CrossRefGoogle ScholarPubMed
De Villartay, J. P., Hockett, R. D., Coran, D., Korsmeyer, S. J., & Cohen, D. I.Deletion of the human T-cell receptor delta-gene by a site-specific recombination. Nature, 1988; 335: 170–4.CrossRefGoogle ScholarPubMed
Hockett, R. D., de Villartay, J. P., Pollock, K., et al.Human T-cell antigen receptor (TCR) delta-chain locus and elements responsible for its deletion are within the TCR alpha-chain locus. Proc Natl Acad Sci U S A, 1988; 85: 9694–8.CrossRefGoogle ScholarPubMed
Groettrup, M., Ungewiss, K., Azogui, O., et al.A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell, 1993; 75: 283–94.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F., & Maniatis, T.Molecular Cloning, a Laboratory Manual (New York: Cold Spring Harbor Laboratory, 1989).Google Scholar
Beishuizen, A., Verhoeven, M. A., Mol, E. J., et al.Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1993; 7: 2045–53.Google ScholarPubMed
Beishuizen, A., Verhoeven, M. A., Mol, E. J., & Dongen, J. J. M.. Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis. Leukemia, 1994; 8: 2228–36.Google ScholarPubMed
Tümkaya, T., Comans-Bitter, W. M., Verhoeven, M. A., & Dongen, J. J. M.. Southern blot detection of immunoglobulin lambda light chain gene rearrangements for clonality studies. Leukemia, 1995; 9: 2127–32.Google ScholarPubMed
Tümkaya, T., Beishuizen, A., Wolvers-Tettero, I. L. M., & Dongen, J. J. M.. Identification of immunoglobulin lambda isotype gene rearrangements by Southern blot analysis. Leukemia, 1996; 10: 1834–9.Google ScholarPubMed
Langerak, A. W., Wolvers-Tettero, I. L. M., & Dongen, J. J. M.. Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia, 1999; 13: 965–74.CrossRefGoogle Scholar
Moreau, E. J., Langerak, A. W., Gastel-Mol, E. J., et al.Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1999; 13: 1620–26.CrossRefGoogle ScholarPubMed
Tümkaya, T., Burg, M., Garcia Sanz, R., et al.Immunoglobulin lambda isotype gene rearrangements in B-cell malignancies. Leukemia, 2001; 15: 121–7.CrossRefGoogle ScholarPubMed
White, T. J., Arnheim, N., & Erlich, H. A.The polymerase chain reaction. Trends Genet, 1989; 5: 185–9.CrossRefGoogle ScholarPubMed
Newton, C. R. & Graham, A.PCR (Oxford, UK: BIOS Scientific Publishers, 1994).Google Scholar
Yamada, M., Hudson, S., Tournay, O., et al.Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc Natl Acad Sci USA, 1989; 86: 5123–7.CrossRefGoogle ScholarPubMed
d'Auriol, L., Macintyre, E., Galibert, F., & Sigaux, F.In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia, 1989; 3: 155–8.Google ScholarPubMed
Macintyre, E. A., d'Auriol, L., Duparc, N.et al.Use of oligonucleotide probes directed against T cell antigen receptor gamma delta variable-(diversity)-joining junctional sequences as a general method for detecting minimal residual disease in acute lymphoblastic leukemias. J Clin Invest, 1990; 86: 2125–35.CrossRefGoogle ScholarPubMed
Breit, T. M., Wolvers-Tettero, I. L. M., Hählen, K., Wering, E. R., & Dongen, J. J. M.. Extensive junctional diversity of gd T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia, 1991; 5: 1076–86.Google Scholar
Deane, M. & Norton, J. D.Immunoglobulin heavy chain variable region family usage is independent of tumor cell phenotype in human B lineage leukemias. Eur J Immunol, 1990; 20: 2209–17.CrossRefGoogle ScholarPubMed
Deane, M., Pappas, H., & Norton, J. D.Immunoglobulin heavy chain gene fingerprinting reveals widespread oligoclonality in B-lineage acute lymphoblastic leukaemia. Leukemia, 1991; 5: 832–8.Google ScholarPubMed
Veelken, H., Tycko, B., & Sklar, J.Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood, 1991; 78: 1318–26.Google ScholarPubMed
Hansen-Hagge, T. E., Yokota, S., & Bartram, C. R.Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood, 1989; 74: 1762–7.Google ScholarPubMed
Jonsson, O. G., Kitchens, R. L., Scott, F. C., & Smith, R. G.Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood, 1990; 76: 2072–9.Google ScholarPubMed
Dongen, J. J. M., Langerak, A. W., Brüggemann, M., et al.Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene rearrangements in suspect lymphoproliferations. Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–317.CrossRefGoogle ScholarPubMed
Langerak, A. W., , San Miguel, J. F., Parreira, A., et al.Clonality analysis in malignant lymphoma: the BIOMED-2 experience. Histopathology, 2002; 41S2: 506–8.Google Scholar
Oksenberg, J. R., Stuart, S., Begovich, A. B., et al.Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature, 1991; 353: 94.CrossRefGoogle ScholarPubMed
Broeren, C. P., Verjans, G. M., Eden, W., et al.Conserved nucleotide sequences at the 5′ end of T cell receptor variable genes facilitate polymerase chain reaction amplification. Eur J Immunol, 1991; 21: 569–75.CrossRefGoogle ScholarPubMed
Doherty, P. J., Roifman, C. M., Pan, S. H., et al.Expression of the human T cell receptor V beta repertoire. Mol Immunol, 1991; 28: 607–12.CrossRefGoogle ScholarPubMed
Wei, S., Charmley, P., Robinson, M. A., & Concannon, P.The extent of the human germline T-cell receptor V beta gene segment repertoire. Immunogenetics, 1994; 40: 27–36.CrossRefGoogle ScholarPubMed
Oostveen, J. W., Breit, T. M., de Wolf, J. T., et al.Polyclonal expansion of T-cell receptor-gd+ T lymphocytes associated with neutropenia and thrombocytopenia. Leukemia, 1992; 6: 410–18.Google ScholarPubMed
Davis, T. H., Yockey, C. E., & Balk, S. P.Detection of clonal immunoglobulin gene rearrangements by polymerase chain reaction amplification and single-strand conformational polymorphism analysis. Am J Pathol, 1993; 142: 1841–7.Google ScholarPubMed
Koch, O. M., Volkenandt, M., Goker, E., et al.Molecular detection and characterization of clonal cell populations in acute lymphocytic leukemia by analysis of conformational polymorphisms of cRNA molecules of rearranged T-cell-receptor-gamma and immunoglobulin heavy-chain genes. Leukemia, 1994; 8: 946–52.Google ScholarPubMed
Bourguin, A., Tung, R., Galili, N., & Sklar, J.Rapid, nonradioactive detection of clonal T-cell receptor gene rearrangements in lymphoid neoplasms. Proc Natl Acad Sci U S A, 1990; 87: 8536–40.CrossRefGoogle ScholarPubMed
Wood, G. S., Tung, R. M., Haeffner, A. C., et al.Detection of clonal T-cell receptor gamma gene rearrangements in early mycosis fungoides/Sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J Invest Dermatol, 1994; 103: 34–41.CrossRefGoogle Scholar
Linke, B., Pyttlich, J., Tiemann, M., et al.Identification and structural analysis of rearranged immunoglobulin heavy chain genes in lymphomas and leukemias. Leukemia, 1995; 9: 840–7.Google ScholarPubMed
Bottaro, M., Berti, E., Biondi, A., Migone, N., & Crosti, L.Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood, 1994; 83: 3271–8.Google ScholarPubMed
Langerak, A. W., Szczepanski, T., Burg, M., Wolvers-Tettero, I. L. M., & Dongen, J. J. M.. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia, 1997; 11: 2192–9.CrossRefGoogle ScholarPubMed
Kneba, M., Bolz, I., Linke, B., & Hiddemann, W.Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood, 1995; 86: 3930–7.Google ScholarPubMed
Linke, B., Bolz, I., Fayyazi, A., et al.Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia, 1997; 11: 1055–62.CrossRefGoogle ScholarPubMed
Visser, O., Coebergh, J. W. W., Schouten, L. J., & Dijck, J. A. A. M.Incidence of Cancer in the Netherlands 1995 (Utrecht, the Netherlands: Vereniging van Integrale Kankercentra, 1998).Google Scholar
Dongen, J. J. M. van, Szczepanski, T., & Adriaansen, H. J. Immunobiology of leukemia. In , E. S. Henderson, , T. A. Lister, & , M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 2002), pp. 85–129.Google Scholar
Sandlund, J. T., Downing, J. R., & Crist, W. M.Non-Hodgkin's lymphoma in childhood. N Engl J Med, 1996; 334: 1238–48.CrossRefGoogle ScholarPubMed
Gouttefangeas, C., Bensussan, A., & Boumsell, L.Study of the CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood, 1990; 75: 931–4.Google ScholarPubMed
Korsmeyer, S. J., Arnold, A., Bakhshi, A., et al.Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell and B cell precursor origins. J Clin Invest, 1983; 71: 301–13.CrossRefGoogle Scholar
Felix, C. A., Wright, J. J., Poplack, D. G., et al.T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest, 1987; 80: 545–56.CrossRefGoogle Scholar
Foroni, L., Catovsky, D., & Luzzatto, L.Immunoglobulin gene rearrangements in hairy cell leukemia and other chronic B cell lymphoproliferative disorders. Leukemia, 1987; 1: 389–92.Google ScholarPubMed
Williams, M. E., Innes, D. J. Jr., Borowitz, M. J., et al.Immunoglobulin and T cell receptor gene rearrangements in human lymphoma and leukemia. Blood, 1987; 69: 79–86.Google Scholar
Furley, A. J., Mizutani, S., Weilbaecher, K., et al.Developmentally regulated rearrangement and expression of genes encoding the T cell receptor-T3 complex. Cell, 1986; 46: 75–87.CrossRefGoogle ScholarPubMed
Foroni, L., Foldi, J., Matutes, E., et al.Alpha, beta and gamma T-cell receptor genes: rearrangements correlate with haematological phenotype in T cell leukaemias. Br J Haematol, 1987; 67: 307–18.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Quertermous, T., Bartram, C. R., et al.T cell receptor-CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J Immunol, 1987; 138: 1260–9.Google Scholar
Greaves, M. F., Chan, L. C., Furley, A. J., Watt, S. M., & Molgaard, H. V.Lineage promiscuity in hemopoietic differentiation and leukemia. Blood, 1986; 67: 1–11.Google ScholarPubMed
Adriaansen, H. J., Soeting, P. W., Wolvers-Tettero, I. L. M., Dongen, J. J. M.. Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia, 1991; 5: 744–51.Google Scholar
Szczepanski, T., Beishuizen, A., Pongers-Willemse, M. J., et al.Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia, 1999; 13: 196–205.CrossRefGoogle ScholarPubMed
Beishuizen, A., Hählen, K., Hagemeijer, A., et al.Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia, 1991; 5: 657–67.Google ScholarPubMed
Beishuizen, A., Wering, E. R. van, Breit, T. M., et al. Molecular biology of acute lymphoblastic leukemia: implications for detection of minimal residual disease. In , W. Hiddeman, , T. Büchner, , B. Wörmann, eds., Acute Leukemias V (Berlin: Springer, 1996), pp. 460–74.Google Scholar
Bird, J., Galili, N., Link, M., , Stites D., & Sklar, J.Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med, 1988; 168: 229–45.CrossRefGoogle ScholarPubMed
Steward, C. G., Goulden, N. J., Katz, F., et al.A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 1994; 83: 1355–62.Google ScholarPubMed
Wasserman, R., Yamada, M., Ito, Y., et al.VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood, 1992; 79: 223–8.Google ScholarPubMed
Kitchingman, G. R.Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood, 1993; 81: 775–82.Google ScholarPubMed
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F., Borne, A. E. von dem, Schoot, C. E.Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood, 1993; 82: 581–9.Google ScholarPubMed
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al.Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.CrossRefGoogle Scholar
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F., et al.Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood, 1995; 86: 692–702.Google ScholarPubMed
Ghali, D. W., Panzer, S., Fischer, S., et al.Heterogeneity of the T-cell receptor delta gene indicating subclone formation in acute precursor B-cell leukemias. Blood, 1995; 85: 2795–801.Google ScholarPubMed
Hansen-Hagge, T. E., Yokota, S., Reuter, H. J., Schwarz, K., & Bartram, C. R.Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway. Blood, 1992; 80: 2353–62.Google ScholarPubMed
Taylor, J. J., Rowe, D., Kylefjord, H., et al.Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia, 1994; 8: 60–6.Google ScholarPubMed
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al.Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.CrossRefGoogle ScholarPubMed
Velden, V. H. J., Willemse, M. J., Schoot, C. E., Wering, E. R., & Dongen, J. J. M.. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia, 2002; 16: 928–36.CrossRefGoogle ScholarPubMed
Chapman, C. J., Zhou, J. X., Gregory, C., Rickinson, A. B., & Stevenson, F. K.VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection. Blood, 1996; 88: 3562–8.Google Scholar
Burg, M., Barendregt, B. H., Wering, E. R., et al.The presence of somatic mutations in immunoglobulin genes of B-cell acute lymphoblastic leukemia (ALL-L3) supports assignment as Burkitt's leukemia-lymphoma rather than B-lineage ALL. Leukemia, 2001; 15: 1141–3.CrossRefGoogle ScholarPubMed
Langerak, A. W., Wolvers-Tettero, I. L. M., Beemd, M. W. M., et al.Immunophenotypic and immunogenotypic characteristics of TCR gammadelta+ T cell acute lymphoblastic leukemia. Leukemia, 1999; 13: 206–14.CrossRefGoogle ScholarPubMed
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., et al.Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor ab lineage. Blood, 1999; 93: 4079–85.Google Scholar
Breit, T. M., Verschuren, M. C. M., Wolvers-Tettero, I. L. M., et al.Human T cell leukemias with continuous V(D)J recombinase activity for TCR-delta gene deletion. J Immunol, 1997; 159: 4341–9.Google Scholar
Schmidt, C. A., Oettle, H., Neubauer, A., et al.Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia, 1992; 6: 1263–7.Google ScholarPubMed
Boeckx, N., Willemse, M. J., Szczepanski, T., et al.Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 2002; 16: 368–75.CrossRefGoogle ScholarPubMed
Willis, T. G. & Dyer, M. J.The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood, 2000; 96: 808–22.Google ScholarPubMed
Hinz, T., Allam, A., Wesch, D., Schindler, D., & Kabelitz, D.Cell-surface expression of transrearranged Vgamma-Cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br J Haematol, 2000; 109: 201–10.CrossRefGoogle ScholarPubMed
Kobayashi, Y., Tycko, B., Soreng, A. L., & Sklar, J.Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol, 1991; 147: 3201–9.Google ScholarPubMed
Retiere, C., Halary, F., Peyrat, M. A., et al.The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR. J Immunol, 1999; 162: 903–10.Google ScholarPubMed
Stern, M. H., Lipkowitz, S., Aurias, A., et al.Inversion of chromosome 7 in ataxia telangiectasia is generated by a rearrangement between T-cell receptor beta and T-cell receptor gamma genes. Blood, 1989; 74: 2076–80.Google ScholarPubMed
Bernard, O., Groettrup, M., Mugneret, F., Berger, R., & Azogui, O.Molecular analysis of T-cell receptor transcripts in a human T-cell leukemia bearing a t(1;14) and an inv(7); cell surface expression of a TCR-beta chain in the absence of alpha chain. Leukemia, 1993; 7: 1645–53.Google Scholar
Begley, C. G., Aplan, P. D., Denning, S. M., et al.The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A, 1989; 86: 10 128–32.CrossRefGoogle ScholarPubMed
Breit, T. M., Mol, E. J., Wolvers-Tettero, I. L. M., et al.Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med, 1993; 177: 965–77.CrossRefGoogle Scholar
Fitzgerald, T. J., Neale, G. A., Raimondi, S. C., & Goorha, R. M.c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood, 1991; 78: 2686–95.Google Scholar
Boehm, T., Foroni, L., Kaneko, Y., Perutz, M. F., & Rabbitts, T. H.The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A, 1991; 88: 4367–71.CrossRefGoogle ScholarPubMed
Garcia, I. S., Kaneko, Y., Gonzalez-Sarmiento, R., et al.A study of chromosome 11p13 translocations involving TCR beta and TCR delta in human T cell leukaemia. Oncogene, 1991; 6: 577–82.Google ScholarPubMed
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al.A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–1504.CrossRefGoogle Scholar
Mauvieux, L., Leymarie, V., Helias, C., et al.High incidence of Hox11L2 expression in children with T-ALL. Leukemia, 2002; 16: 2417–22.CrossRefGoogle ScholarPubMed
Przybylski, G., Oettle, H., Ludwig, W. D., Siegert, W., & Schmidt, C. A.Molecular characterization of illegitimate TCR delta gene rearrangements in acute myeloid leukaemia. Br J Haematol, 1994; 87: 301–7.CrossRefGoogle ScholarPubMed
O'Connor, N., Gatter, K. C., Wainscoat, J. S., et al.Practical value of genotypic analysis for diagnosing lymphoproliferative disorders. J Clin Pathol, 1987; 40: 147–150.CrossRefGoogle ScholarPubMed
Korsmeyer, S. J.Antigen receptor genes as molecular markers of lymphoid neoplasms. J Clin Invest, 1987; 79: 1291–5.CrossRefGoogle ScholarPubMed
Kneba, M., Bolz, I., Linke, B., et al.Characterization of clone-specific rearranged T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood, 1994; 84: 574–81.Google ScholarPubMed
Siegelman, M. H., Cleary, M. L., Warnke, R., & Sklar, J.Frequent biclonality and Ig gene alterations among B cell lymphomas that show multiple histologic forms. J Exp Med, 1985; 161: 850–63.CrossRefGoogle ScholarPubMed
Wering, E. R., Beishuizen, A., Roeffen, E. T., et al.Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia, 1995; 9: 1523–33.Google ScholarPubMed
Szczepanski, T., Willemse, M. J., Kamps, W. A., et al.Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia – proposal for an easy strategy. Med Pediatr Oncol, 2001; 36: 352–8.CrossRefGoogle ScholarPubMed
Smedmyr, B., Bengtsson, M., Jakobsson, A., et al.Regeneration of CALLA (CD10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation. Eur J Haematol, 1991; 46: 146–51.CrossRefGoogle Scholar
Wering, E. R., Linden-Schrever, B. E., Szczepanski, T., et al.Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol, 2000; 110: 139–46.CrossRefGoogle ScholarPubMed
Knulst, A. C., Adriaansen, H. J., Hahlen, K., et al.Early diagnosis of smoldering acute lymphoblastic leukemia using immunological marker analysis. Leukemia, 1993; 7: 532–6.Google ScholarPubMed
Campana, D., Yokota, S., Coustan-Smith, E., et al.The detection of residual acute lymphoblastic leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia, 1990; 4: 609–14.Google ScholarPubMed
Pongers-Willemse, M. J., Verhagen, O. J. H. H, Tibbe, G. J. M., et al.Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia, 1998; 12: 2006–14.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Seriu, T., Panzer-Grumayer, E. R., et al.Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 1998; 352: 1731–8.CrossRefGoogle ScholarPubMed
Velden, V. H. J., Wijkhuijs, J. M., Jacobs, D. C. H., et al.T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia, 2002; 16: 1372–80.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×