Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-05T17:55:15.333Z Has data issue: false hasContentIssue false

7 - Bionic Organs

from Part II - Structures

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

Defined as the interface of biology and electronics, “bionics” is the science of integrating electronic devices with biological systems to construct hybrid systems that can restore the full functionality of an impaired biological organ or provide additional features and augmented capabilities (Figure 7.1). Indeed, the main goal of designing bionic organs is to restore the original functionality or replace the anatomical defects with enhanced abilities, such that the resulted hybrid would be able to assist humans in highly complex or hazardous tasks. Despite common artificial organs with merely mechanical and electronic elements, bionic organs consist of both mechanical and cellular components coupled in order to regenerate organ architecture and function, and tissue regrowth [1].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Famulari, A., De Simone, P., Verzaro, R., et al. (2003). Artificial organs as a bridge to transplantation. Artificial Cells, Blood Substitutes, and Biotechnology 31, 163168.CrossRefGoogle ScholarPubMed
Anderson, J. M., & McNally, A. K. (2011). Biocompatibility of implants: Lymphocyte/macrophage interactions. Seminars in Immunopathology, 33, 221233.Google Scholar
Veiseh, O., Doloff, J. C., Ma, et al. (2015). Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 14, 643651.Google Scholar
Zhang, L., Cao, Z., Bai, T., et al. (2013). Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature Biotechnology, 31(6), 553556.Google Scholar
Vincent, J. F. V., & Wegst, U. G. K. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure Development, 33(3), 187199.CrossRefGoogle ScholarPubMed
Ji, B., & Gao, H. (2004). Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52(9), 19631990.Google Scholar
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2006). Biomaterials science: An introduction to materials in medicine. MRS Bulletin31, 59.Google Scholar
Vincent, J. (2012). Structural biomaterials (3rd ed.) Princeton, NJ: Princeton University Press.Google Scholar
Cebon, D., & Ashby, M. F. (1992). Materials selection in mechanical design. In Barry, T. & Reynard, K. (Eds.), Computerization and networking of materials databases: Third volume. West Conshohocken, PA: ASTM International..Google Scholar
Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221232.Google Scholar
Kong, Y. L., Gupta, M. K., Johnson, B. N., & McAlpine, M. C. (2016). 3D printed bionic nanodevices. Nano Today, 11(3), 330350.Google Scholar
Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in materials Science, 52(8), 12631334.CrossRefGoogle Scholar
Sebastian Mannoor, M. (2014). Bionic Nanosystems.Google Scholar
Marro, A., Bandukwala, T., & Mak, W. (2016). Three-dimensional printing and medical imaging: A review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1), 29.Google Scholar
Fenster, A., & Downey, D. B. (1996). 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology Magazine, 15(6), 4151.Google Scholar
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773785.Google Scholar
Nakamura, M., Iwanaga, S., Henmi, C., Arai, K., & Nishiyama, Y. (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2(1), 014110.Google Scholar
Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 4553.Google Scholar
Re’em, T., Tsur-Gang, O., & Cohen, S. (2010). The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials, 31(26), 67466755.Google Scholar
Xu, T., Jin, J., Gregory, C., Hickman, J. J., & Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 9399.CrossRefGoogle ScholarPubMed
Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J., & Boland, T. (2004). Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 37073715.Google Scholar
Xu, T., Gregory, C. A., Molnar, P., et al. (2006). Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 35803588.Google Scholar
Boland, T., Xu, T., Damon, B., & Cui, X. (2006). Application of inkjet printing to tissue engineering. Biotechnology Journal: Healthcare Nutrition Technology, 1(9), 910917.Google Scholar
Saunders, R. E., Gough, J. E., & Derby, B. (2008). Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193203.Google Scholar
Bohandy, J., Kim, B. F., & Adrian, F. J. (1986). Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60(4), 15381539.CrossRefGoogle Scholar
Chuang, A. T., Margo, C. E., & Greenberg, P. B. (2014). 2 Retinal implants: A systematic review. British Journal of Ophthalmology, 98(7), 852856.CrossRefGoogle Scholar
Stingl, K., Bartz-Schmidt, K. U., Besch, D., et al. (2013). Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20130077.Google Scholar
Lewis, P. M., Ayton, L. N., Guymer, R. H., et al. (2016). Advances in implantable bionic devices for blindness: A review. ANZ Journal of Surgery, 86(9), 654659.Google Scholar
Brindley, G. S., & Lewin, W. S. (1968). The sensations produced by electrical stimulation of the visual cortex. The Journal of Physiology, 196(2), 479493.CrossRefGoogle ScholarPubMed
Srivastava, N. R., Troyk, P. R., Towle, V. L., et al. (2007). Estimating phosphene maps for psychophysical experiments used in testing a cortical visual prosthesis device. In 2007 3rd International IEEE/EMBS Conference on Neural Engineering. pp. 130–133. doi:10.1109/CNE.2007.369629Google Scholar
Lowery, A. J. (2013). Introducing the Monash vision group’s cortical prosthesis. In 2013 IEEE International Conference on Image Processing. pp. 1536–1539. doi:10.1109/ICIP.2013.6738316CrossRefGoogle Scholar
Fernández, E., Greger, B., House, P. A., et al. (2014). Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects. Frontiers in Neuroengineering, 7, 24Google Scholar
Hochberg, L. R., Bacher, D., Jarosiewicz, B., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372375.Google Scholar
Collinger, J. L., Wodlinger, B., Downey, J. E., et al. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557564.Google Scholar
Lorach, H., Marre, O., Sahel, J.-A., Benosman, R., & Picaud, S. (2013). Neural stimulation for visual rehabilitation: Advances and challenges. Journal of Physiology – Paris, 107(5), 421431.Google Scholar
Yue, L., Weiland, J. D., Roska, B., & Humayun, M. S. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in Retinal and Eye Research, 53, 2147.Google Scholar
Ruiters, S., Sun, Y., Jong, S. de, Politis, C., & Mombaerts, I. (2016). Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. British Journal of Ophthalmology, 100(7), 879881.Google Scholar
Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: Current designs and future possibilities. Journal of Rehabilitation Research and Development, 45(5), 695730.Google Scholar
Lim, H. H., & Lenarz, T. (2015). Auditory midbrain implant: Research and development towards a second clinical trial. Hearing Research, 322, 212223.Google Scholar
Tan, F., Walshe, P., Viani, L., & Al-Rubeai, M. (2013). Surface biotechnology for refining cochlear implants. Trends in Biotechnology, 31(12), 678687.Google Scholar
Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J., & Vacanti, C. A. (1997). Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plastic and Reconstructive Surgery, 100(2), 297302; discussion 303–304.Google Scholar
Bichara, D. A., O’Sullivan, N. A., Pomerantseva, I., et al. (2012). The tissue-engineered auricle: Past, present, and future. Tissue Engineering Part B: Reviews, 18(1), 5161.Google Scholar
Mannoor, M. S., Jiang, Z., James, T., et al. (2013). 3D Printed bionic ears. Nano Letters 13(6), 26342639.Google Scholar
Xu, T., Binder, K. W., Albanna, M. Z., et al. (2013). Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5(1), 015001.Google Scholar
Coelho, D. H., & Costanzo, R. M. (2016). Posttraumatic olfactory dysfunction. Auris Nasus Larynx, 43(2), 137143.CrossRefGoogle ScholarPubMed
Hong, S.-C., Holbrook, E. H., Leopold, D. A., & Hummel, T. (2012). Distorted olfactory perception: A systematic review. Acta Otolaryngologica (Stockh.), 132(Suppl. 1), S27S31.Google Scholar
Conley, D. B., Robinson, A. M., Shinners, M. J., & Kern, R. C. (2003). Age-related olfactory dysfunction: Cellular and molecular characterization in the rat. American Journal of Rhinology, 17(3), 169175.CrossRefGoogle ScholarPubMed
Doty, R. L. (2012). Olfactory dysfunction in Parkinson disease. Nature Reviews Neurology, 8(6), 329339.Google Scholar
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352355.Google Scholar
Wasilewski, T., Gębicki, J., & Kamysz, W. (2017). Bioelectronic nose: Current status and perspectives. Biosensors and Bioelectronics, 87, 480494.Google Scholar
Goldsmith, B. R., Mitala, J. J. Jr., Josue, J., et al. (2011). Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano, 5(7), 54085416.Google Scholar
Cook, B. L., Ernberg, K. E., Chung, H., & Zhang, S. (2008). Study of a synthetic human olfactory receptor 17-4: Expression and purification from an inducible mammalian cell line. PLoS ONE, 3(8) p.e2920.Google Scholar
Sanz, G., & Pajot-Augy, E. (2013). Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer. Methods in Molecular Biology Clifton NJ, 1003, 149160.Google Scholar
Lee, S. H., Jin, H. J., Song, H. S., Hong, S., & Park, T. H. (2012). Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. Journal of Biotechnology, 157(4), 467472.Google Scholar
Zhang, X., De la Cruz, O., Pinto, J. M., et al. (2007). Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biology, 8(5), R86.Google Scholar
Mannoor, M. S., Zhang, S., Link, A. J., & McAlpine, M. C. (2010). Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proceedings of the National Academy of Sciences, 107(4), 1920719212.Google Scholar
Pavan, S., & Berti, F. (2012). Short peptides as biosensor transducers. Analytical and Bioanalytical Chemistry, 402(10), 30553070.Google Scholar
Jin, H. J., Lee, S. H., Kim, T. H., et al. (2012). Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosensors and Bioelectronics, 35(1), 335341.CrossRefGoogle ScholarPubMed
Son, M., Kim, D., Ko, H. J., Hong, S., & Park, T. H. (2017). A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosensors and Bioelectronics 87, 901907.Google Scholar
Firestein, S. (2001). How the olfactory system makes sense of scents. Nature, 413(6852), 211218.CrossRefGoogle ScholarPubMed
Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5), 713723.CrossRefGoogle ScholarPubMed
Saito, H., Chi, Q., Zhuang, H., Matsunami, H., & Mainland, J. D. (2009). Odor coding by a Mammalian receptor repertoire. Science Signaling, 2(60), ra9.Google Scholar
Jodat, Y. A., Kiaee, K., Vela Jarquin, D., et al. (2020). A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Advanced Science, 7(5), 1901878.Google Scholar
Quignon, P., Giraud, M., Rimbault, M., et al. (2005). The dog and rat olfactory receptor repertoires. Genome Biology, 6(10), R83.CrossRefGoogle ScholarPubMed
Tan, J., Savigner, A., Ma, M., & Luo, M. (2010). Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron, 65(6), 912926.Google Scholar
Zhang, X., De la Cruz, O., Pinto, J. M., Nicolae, D., Firestein, S., & Gilad, Y. (2007). Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biology, 8(5), R86.Google Scholar
Peck, M. D. (2011). Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns, 37(7), 10871100.Google Scholar
Supp, D. M., & Boyce, S. T. (2005). Engineered skin substitutes: Practices and potentials. Clinics in Dermatology, 23(4), 403412.Google Scholar
Michael, S., Sorg, H., Peck, C. T., et al. (2013). Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 8(3), e57741.Google Scholar
Someya, T., Sekitani, T., Iba, S., et al. (2004). A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences USA, 101(27), 99669970.CrossRefGoogle ScholarPubMed
Kaltenbrunner, M., Sekitani, T., Reeder, J., et al. (2013). An ultra-lightweight design for imperceptible plastic electronics. Nature, 499(7459), 458463.Google Scholar
Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and mechanics for stretchable electronics. Science, 327(5973), 16031607.Google Scholar
Kim, D.-H., Ghaffari, R., Lu, N., et al. (2012). Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences109(49), 109, 1991019915.Google Scholar
Dowling, R. D., Gray, L. A. Jr, Etoch, S. W., et al. (2003). The AbioCor implantable replacement heart. Annals of Thoracic Surgery, 75(6), S93S99.Google Scholar
Russell, S. J., El-Khatib, F. H., Sinha, M., et al. (2014). Outpatient glycemic control with a bionic pancreas in type 1 diabetes. New England Journal of Medicine, 371(4), 313325.Google Scholar
Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T., & Horch, K. W. (2004). Residual function in peripheral nerve stumps of amputees: Implications for neural control of artificial limbs. The Journal of Hand Surgery, 29(4), 605615; discussion 616–618.Google Scholar
Minev, I. R., Musienko, P., Hirsch, A., et al. (2015). Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science, 347(6218), 159163.Google Scholar
Green, R., & Abidian, M. R. (2015). Conducting polymers for neural prosthetic and neural interface applications. Advanced Matererials, 27(46), 76207637.Google Scholar
Vidal, G. W. V., Rynes, M. L., Kelliher, Z., & Goodwin, S. J. (2016). Review of brain-machine interfaces used in neural prosthetics with new perspective on somatosensory feedback through method of signal breakdown. Scientifica, 2016, 8956432, 10 pp.Google Scholar
Barrese, J. C., Rao, N., Paroo, K., et al. (2013). Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 10(6), 066014.Google Scholar
Kim, D.-H., Lu, N., Ma, R., et al. (2011). Epidermal electronics. Science, 333(6044), 838843.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×