Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T06:47:08.566Z Has data issue: false hasContentIssue false

Chapter 13 - Physical Health of Patients with Schizophrenia

Management of Antipsychotic-Induced Side Effects and Treatment of Comorbid Somatic Conditions

Published online by Cambridge University Press:  01 February 2024

Andrea Fiorillo
Affiliation:
University of Campania “L. Vanvitelli”, Naples
Peter Falkai
Affiliation:
Ludwig-Maximilians-Universität München
Philip Gorwood
Affiliation:
Sainte-Anne Hospital, Paris
Get access

Summary

Schizophrenia is associated with increased risk of somatic comorbities and reduced life expectancy [1]. At the same time, available data suggests that continuous antipsychotic treatment decreases the mortality rate of schizophrenia patients [2,3]. Since both short- and long-term administration of antipsychotics induce numerous physical side effects, it is important that low – or the minimum effective – doses are used [4]. Patients diagnosed with schizophrenia and treated with antipsychotics frequently also suffer from psychiatric (e.g., depression, anxiety, insomnia) and somatic (e.g., cardiovascular diseases, infections, metabolic disorders) comorbidities. While often underreported and undertreated, somatic comorbidities represent a severe burden for schizophrenia patients [5]. In a Hungarian nationwide register-based study, researchers showed that patients with schizophrenia (n = 65,169) had a statistically significantly higher all-cause mortality rate than control participants (risk ratio = 2,4; P < 0.0001) [1]. The most prevalent comorbidities in this study were cerebro- and cardiovascular diseases (53.7%), followed by acute lower respiratory infections and other infections [1].

Type
Chapter
Information
Mental Health Research and Practice
From Evidence to Experience
, pp. 210 - 227
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bitter, I., Czobor, P., Borsi, A., et al. Mortality and the relationship of somatic comorbidities to mortality in schizophrenia: A nationwide matched-cohort study. Eur Psychiatry 2017; 45: 97103.CrossRefGoogle ScholarPubMed
Oh, J., Nam, H., Park, S., Chae, J. H., Kim, T. S.. Decreased cardiovascular death in schizophrenia patients treated with antipsychotics: A Korean national cohort study. Schizophr Res 2021; 228: 417424.CrossRefGoogle ScholarPubMed
Taipale, H., Mittendorfer-Rutz, E., Alexanderson, K., et al. Antipsychotics and mortality in a nationwide cohort of 29,823 patients with schizophrenia. Schizophr Res 2018; 197: 274280.CrossRefGoogle Scholar
Andreasen, N. C., Liu, D., Ziebell, S., Vora, A., and Ho, B. C.. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: A prospective longitudinal MRI study. Am J Psychiatry 2013; 170 (6): 609615.CrossRefGoogle ScholarPubMed
Correll, C. U., Druss, B. G., Lombardo, I., et al. Findings of a US national cardiometabolic screening program among 10,084 psychiatric outpatients. Psychiatr Serv 2010; 61 (9): 892898.CrossRefGoogle Scholar
Hennekens, C. H., Hennekens, A. R, Hollar, D, Casey, D. E.. Schizophrenia and increased risks of cardiovascular disease. Am Heart J 2005; 150 (6): 11151121CrossRefGoogle ScholarPubMed
Morrato, E. H., Newcomer, J. W., Kamat, S., et al. Metabolic screening after the American Diabetes Association’s consensus statement on antipsychotic drugs and diabetes. Diabetes Care 2009; 32 (6): 10371042.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators: Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353 (12): 12091223.CrossRefGoogle ScholarPubMed
Farley, J. F., Hansen, R. A., Yu-Isenberg, K. S., Maciejewski, M. L.. Antipsychotic adherence and its correlation to health outcomes for chronic comorbid conditions. Prim Care Companion CNS Disord 2012; 14 (3): PCC.11m01324. https://doi.org/10.4088/pcc.11m01324.Google ScholarPubMed
Herzig, S. J., LaSalvia, M. T., Naidus, E., et al. Antipsychotics and the risk of aspiration pneumonia in individuals hospitalized for nonpsychiatric conditions: A cohort study. J Am Geriatr Soc 2017; 65 (12): 25802586.CrossRefGoogle ScholarPubMed
Beovic, B., Plesnicar, B. K, Potocan, M., et al. Antibiotic prescribing in psychiatric hospitals and interactions between antibiotics and psychotropic drugs: A prospective observational study. Infect Control Hosp Epidemiol 2016; 37 (2): 233235.CrossRefGoogle ScholarPubMed
Gatov E, E., Rosella, L, Chiu, M, Kurdyak, PA. Trends in standardized mortality among individuals with schizophrenia, 1993–2012: A population-based, repeated cross-sectional study. CMAJ 2017; 18: 189 (37): E11771187.CrossRefGoogle ScholarPubMed
Pankiewicz-Dulacz, M., Stenager, E., Chen, M., Stenager, E.. Incidence rates and risk of hospital registered infections among schizophrenia patients before and after onset of illness: A population-based nationwide register study. J Clin Med 2018; 7 (12): 485.CrossRefGoogle ScholarPubMed
Nemani, K., Li, C., Olfson, M., et al. Association of psychiatric disorders with mortality among patients with COVID-19. JAMA Psychiatry 2021; 78 (4): 380386.CrossRefGoogle ScholarPubMed
Štuhec, M., Potočin, I., Stepan, D., et al. Potential drug interactions with antibacterials in long-term care facilities analyzed by two interaction checkers. Int J Clin Pharm 2019; 41 (4): 932938.CrossRefGoogle ScholarPubMed
Stuhec, M., Stoppe, G.. Psychopharmacotherapy in aged patients. In Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (Eds.), NeuroPsychopharmacotherapy. Cham: Springer, 2020. https://doi.org/10.1007/978-3-319-56015-1_269-1.Google Scholar
Huang, C. Y., Fang, S. C., Shao, Y. J.. Comparison of long-acting injectable antipsychotics with oral antipsychotics and suicide and all-cause mortality in patients with newly diagnosed schizophrenia. JAMA Network Open 2021; 4 (5): e218810–e218810.CrossRefGoogle ScholarPubMed
Solmi, M., Murru, A., Pacchiarotti, I., et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: A state-of-the-art clinical review. Ther Clin Risk Manag 2017; 13: 757777.CrossRefGoogle ScholarPubMed
Taipale, H., Tanskanen, A., Mehtälä, J., et al. 20-year follow-up study of physical morbidity and mortality in relationship to antipsychotic treatment in a nationwide cohort of 62,250 patients with schizophrenia (FIN20). World Psychiatry 2020; 19 (1): 6168.CrossRefGoogle Scholar
Stahl, S. M. and Maguire, G. A.. How and when to treat the most common adverse effects of antipsychotics: Expert review from research to clinical practice. Acta Psychiatr Scand 2021; 143 (2): 172180.CrossRefGoogle ScholarPubMed
Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019; 394 (10202): 939951.CrossRefGoogle ScholarPubMed
Kishimoto, T., Hagi, K., Nitta, M., Kane, J. M., Correll, C. U.. Long-term effectiveness of oral second-generation antipsychotics in patients with schizophrenia and related disorders: a systematic review and meta-analysis of direct head-to-head comparisons. World Psychiatry 2019; 18 (2): 208224.CrossRefGoogle ScholarPubMed
Zernig, G., Bischinger, S., Hiemke, C.. Adverse Drug Reactions, Intoxications and Interactions of Neuropsychotropic Medications. In Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (Eds.), NeuroPsychopharmacotherapy. Cham: Springer, 2020.Google Scholar
Stroup, T. S., Gray, N.. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018; 17 (3): 341356.CrossRefGoogle ScholarPubMed
Hasan, A., Falkai, P., Wobrock, T., et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: Update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry 2013; 14 (1): 244.CrossRefGoogle ScholarPubMed
Murray, R. M., Quattrone, D., Natesan, S., et al. Should psychiatrists be more cautious about the long-term prophylactic use of antipsychotics? Br J Psychiatry 2016; 209 (5): 361365.CrossRefGoogle ScholarPubMed
Moncrieff, J, Leo, J.. A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med 2010; 40 (9): 14091422.CrossRefGoogle ScholarPubMed
Huhtaniska, S., Jääskeläinen, E., Hirvonen, N., et al. Long-term antipsychotic use and brain changes in schizophrenia – a systematic review and meta-analysis. Hum Psychopharmacol 2017; 32 (2): https://doi.org/10.1002/hup.2574.CrossRefGoogle ScholarPubMed
Vita, A., De Peri, L., Deste, G., Barlati, S., Sacchetti, E.. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: Does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry 2015; 78 (6): 403412.CrossRefGoogle Scholar
Schneider-Thoma, J., Efthimiou, O., Huhn, M., et al. Second-generation antipsychotic drugs and short-term mortality: a systematic review and meta-analysis of placebo-controlled randomised controlled trials. Lancet Psychiatry. 2018; 5 (8): 653663.CrossRefGoogle ScholarPubMed
Torniainen, M., Mittendorfer-Rutz, E., Tanskanen, A., et al. Antipsychotic treatment and mortality in schizophrenia. Schizophr Bull 2015; 41 (3): 656663 [published correction appears in Schizophr Bull. 2016; 42(2): 528].CrossRefGoogle ScholarPubMed
Tiihonen, J., Lönnqvist, J., Wahlbeck, K., et al. 11-year follow-up of mortality in patients with schizophrenia: A population-based cohort study (FIN11 study). Lancet 2009; 374 (9690): 620627.CrossRefGoogle ScholarPubMed
Wimberley, T., MacCabe, J. H., Laursen, T. M., et al. Mortality and self-harm in association with clozapine in treatment-resistant schizophrenia. Am J Psychiatry 2017; 174 (10): 990998.CrossRefGoogle ScholarPubMed
Schwartz, M., Hocherman, S.. Antipsychotic-induced rabbit syndrome: Epidemiology, management and pathophysiology. CNS Drugs 2004; 18 (4): 213220.CrossRefGoogle ScholarPubMed
Martino, D., Karnik, V., Osland, S., Barnes, T. R. E., Pringsheim, T. M.. Movement disorders associated with antipsychotic medication in people with schizophrenia: An overview of Cochrane reviews and meta-analysis. Can J Psychiatry 2018; 63 (11): 706743718777392.CrossRefGoogle ScholarPubMed
Demyttenaere, K., Detraux, J., Racagni, G., Vansteelandt, K.. Medication-induced akathisia with newly approved antipsychotics in patients with a severe mental illness: A systematic review and meta-analysis. CNS Drugs 2019; 33 (6): 549566.CrossRefGoogle ScholarPubMed
Poyurovsky, M., Weizman, A.. Treatment of antipsychotic-induced akathisia: Role of serotonin 5-HT2a receptor antagonists. Drugs 2020; 80 (9): 871882.CrossRefGoogle Scholar
Ricciardi, L., Pringsheim, T, Barnes, T. R. E, et al. Treatment recommendations for tardive dyskinesia. Can J Psychiatry 2019; 64 (6): 388399.CrossRefGoogle ScholarPubMed
Bergman, H., Bhoopathi, P. S., Soares-Weiser, K.. Benzodiazepines for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst Rev 2018; 1 (1): CD000205.Google ScholarPubMed
Bergman, H., Soares-Weiser, K.. Anticholinergic medication for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst Rev 2018; 1 (1): CD000204.Google ScholarPubMed
Bergman, H., Rathbone, J., Agarwal, V., Soares-Weiser, K.. Antipsychotic reduction and/or cessation and antipsychotics as specific treatments for tardive dyskinesia. Cochrane Database Syst Rev 2018; 2 (2): CD000459.Google ScholarPubMed
Solmi, M., Pigato, G., Kane, J. M., Correll, C. U.. Treatment of tardive dyskinesia with VMAT-2 inhibitors: A systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther 2018; 12: 12151238.CrossRefGoogle ScholarPubMed
Caroff, S. N.. Recent advances in the pharmacology of tardive dyskinesia. Clin Psychopharmacol Neurosci 2020; 18 (4): 493506.CrossRefGoogle ScholarPubMed
Soares-Weiser, K., Rathbone, J., Ogawa, Y., Shinohara, K., Bergman, H.. Miscellaneous treatments for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst Rev 2018; 3 (3): CD000208.Google ScholarPubMed
Soares-Weiser, K., Maayan, N., Bergman, H.. Vitamin E for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst Rev 2018; 1 (1): CD000209.Google ScholarPubMed
De Hert, M., Dekker, J. M., Wood, D., et al. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry 2009; 24 (6): 412424.CrossRefGoogle Scholar
Alberti, K. G., Zimmet, P., Shaw, J.. Metabolic syndrome – a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 2006; 23 (5): 469480.CrossRefGoogle ScholarPubMed
MacKenzie, N. E., Kowalchuk, C., Agarwal, S. M., et al. Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front Psychiatry 2018; 9: 622.CrossRefGoogle ScholarPubMed
Hagi, K., Nosaka, T., Dickinson, D., et al. Association between cardiovascular risk factors and cognitive impairment in people with schizophrenia: A systematic review and meta-analysis. JAMA Psychiatry 2021; 78 (5): 510518.CrossRefGoogle ScholarPubMed
Pillinger, T., McCutcheon, R. A., Vano, L., et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020; 7 (1): 6477.CrossRefGoogle ScholarPubMed
Bak, M., Drukker, M., Cortenraad, S., Vandenberk, E., Guloksuz, S.. Antipsychotics result in more weight gain in antipsychotic naive patients than in patients after antipsychotic switch and weight gain is irrespective of psychiatric diagnosis: A meta-analysis. PLoS One 2021; 16 (2): e0244944.CrossRefGoogle ScholarPubMed
Kessing, L. V., Thomsen, A. F., Mogensen, U. B., Andersen, P. K.. Treatment with antipsychotics and the risk of diabetes in clinical practice. Br J Psychiatry 2010; 197 (4): 266271.CrossRefGoogle ScholarPubMed
Maher, R. L., Hanlon, J., Hajjar, E. R.. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf 2014; 13: 5765CrossRefGoogle ScholarPubMed
Leelakanok, N., Holcombe, A. L., Lund, B. C., et al. Association between polypharmacy and death: A systematic review and meta-analysis. J Am Pharm Assoc 2003; 57 (6): 729738.e10.CrossRefGoogle Scholar
Correll, C. U., Frederickson, A. M., Kane, J. M., Manu, P.. Does antipsychotic polypharmacy increase the risk for metabolic syndrome? Schizophr Res 2007; 89 (1–3): 91100.CrossRefGoogle ScholarPubMed
Manu, P., Dima, L., Shulman, M., et al Weight gain and obesity in schizophrenia: Epidemiology, pathobiology, and management. Acta Psychiatr Scand 2015; 132 (2): 97108.CrossRefGoogle ScholarPubMed
Dayabandara, M., Hanwella, R., Ratnatunga, S, et al. Antipsychotic-associated weight gain: Management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat 2017; 13: 22312241.CrossRefGoogle ScholarPubMed
Tse, L., Procyshyn, R. M., Fredrikson, D. H., et al. Pharmacological treatment of antipsychotic-induced dyslipidemia and hypertension. Int Clin Psychopharmacol 2014; 29 (3): 125137.CrossRefGoogle ScholarPubMed
Kanagasundaram, P., Lee, J., Prasad, F., et al. Pharmacological interventions to treat antipsychotic-induced dyslipidemia in schizophrenia patients: A systematic review and meta analysis. Front Psychiatry 2021; 12: 642403.CrossRefGoogle ScholarPubMed
Haddad, P. M., Wieck, A.. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 2004; 64 (20): 22912314.CrossRefGoogle ScholarPubMed
Grigg, J., Worsley, R., Thew, C, et al. Antipsychotic-induced hyperprolactinemia: synthesis of world-wide guidelines and integrated recommendations for assessment, management and future research. Psychopharmacology (Berl) 2017; 234 (22): 32793297.CrossRefGoogle ScholarPubMed
Polcwiartek, C., Kragholm, K., Schjerning, O., Graff, C., Nielsen, J.. Cardiovascular safety of antipsychotics: A clinical overview. Expert Opin Drug Saf 2016; 15 (5): 679688.CrossRefGoogle ScholarPubMed
Ralph, S. J., Espinet, A. J.. Increased all-cause mortality by antipsychotic drugs: Updated review and meta-analysis in dementia and general mental health care. J Alzheimers Dis Rep 2018; 2 (1): 126.CrossRefGoogle ScholarPubMed
Beach, S. R., Celano, C. M., Noseworthy, P. A., Januzzi, J. L., Huffman, J. C.. QTc prolongation, torsades de pointes, and psychotropic medications. Psychosomatics 2013; 54 (1): 113.CrossRefGoogle ScholarPubMed
De Berardis, D., Rapini, G., Olivieri, L., et al. Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine. Ther Adv Drug Saf 2018; 9 (5): 237256.CrossRefGoogle ScholarPubMed
Aydin, M., Ilhan, B. C., Calisir, S, Yildirim, S., Eren, I.. Continuing clozapine treatment with lithium in schizophrenic patients with neutropenia or leukopenia: Brief review of literature with case reports. Ther Adv Psychopharmacol 2016; 6 (1): 3338.CrossRefGoogle ScholarPubMed
Ware, M. R., Feller, D. B., Hall, K. L.. Neuroleptic malignant syndrome: Diagnosis and management. Prim Care Companion CNS Disord 2018; 20 (1): 17r02185.CrossRefGoogle ScholarPubMed
Aging Brain Care. Anticholinergic Cognitive Burden Scale. 2012 update. Available on the University of East Anglia Aging Brain Care. Anticholinergic Cognitive Burden Scale. 2012 update. www.uea.ac.uk/documents/746480/2855738/Anticholinergics.pdf (last accessed June 15, 2021).Google Scholar
Fang, F., Sun, H., Wang, Z., et al. Antipsychotic drug-induced somnolence: Incidence, mechanisms, and management. CNS Drugs 2016; 30 (9): 845867.CrossRefGoogle ScholarPubMed
Chen, S. Y., Ravindran, G., Zhang, Q., Kisely, S., Siskind, D.. Treatment Strategies for Clozapine-Induced Sialorrhea: A Systematic Review and Meta-analysis. CNS Drugs 2019; 33 (3): 225238.CrossRefGoogle ScholarPubMed
Gupta, S., Khastgir, U., Croft, M., Roshny, S.. Management of clozapine-induced sialorrhoea. BJPsych Advances 2020; 26 (2): 106108.CrossRefGoogle Scholar
Davey, P., Brown, E., Charani, E., et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 2013; 4: CD003543.Google Scholar
Grover, S., Dalla, E., Mehra, A., et al. Physical comorbidity and its impact on symptom profile of depression among elderly patients attending psychiatry services of a tertiary care hospital. Indian J Psychol Med 2017; 39 (4): 450456.CrossRefGoogle ScholarPubMed
van Strien, A. M., Souverein, P. C., Keijsers, C. K., et al. Antipsychotic drug use associated with urinary tract infections in older women. Maturitas 2017; 98: 4650.CrossRefGoogle ScholarPubMed
Goodlet, K. J., Zmarlicka, M. T., Peckham, A. M.. Drug–drug interactions and clinical considerations with co-administration of antiretrovirals and psychotropic drugs. CNS Spectr 2019; 24 (3): 287312.CrossRefGoogle ScholarPubMed
Stuhec, M., Flegar, I., Zelko, E., Kovačič, A., Zabavnik, V.. Clinical pharmacist interventions in cardiovascular disease pharmacotherapy in elderly patients on excessive polypharmacy: A retrospective pre-post observational multicentric study. Wien Klin Wochenschr 2021 Jan 20. https://doi.org/10.1007/s00508-020-01801-y. Epub ahead of print. PMID: 33471149.CrossRefGoogle Scholar
Williams, B., Mancia, G., Spiering, W., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 30213104.CrossRefGoogle ScholarPubMed
Ponikowski, P, Voors, A. A., Anker, S. D, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 21292200.CrossRefGoogle Scholar
Markowitz, J. S., Wells, B .G., Carson, W. H.. Interactions between antipsychotic and antihypertensive drugs. Ann Pharmacother 1995; 29 (6): 603609.CrossRefGoogle ScholarPubMed
By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc 2019; 67 (4): 674694.CrossRefGoogle Scholar
Stuhec, M., Keuschler, J., Serra-Mestres, J., Isetta, M.. Effects of different antihypertensive medication groups on cognitive function in older patients: A systematic review. Eur Psychiatry 2017; 46: 115.CrossRefGoogle ScholarPubMed
Stahl, S. Stahl’s Essential Psychopharmacology, 4th ed., Cambridge: Cambridge University Press, 2013.Google Scholar
Alvarez-Jimenez, M., Hetrick, S. E., Gonzalez-Blanch, C., Gleeson, J. F., McGorry, P. D.. Non-pharmacological management of antipsychotic-induced weight gain: Systematic review and meta-analysis of randomised controlled trials. Br J Psychiatry 2008; 193 (2): 101107.CrossRefGoogle ScholarPubMed
de Silva, V. A., Suraweera, C., Ratnatunga, S. S., et al. Metformin in prevention and treatment of antipsychotic induced weight gain: A systematic review and meta-analysis. BMC Psychiatry 2016; 16 (1): 341.CrossRefGoogle ScholarPubMed
Jiang, W. L., Cai, D. B., Yin, F., et al. Adjunctive metformin for antipsychotic-induced dyslipidemia: A meta-analysis of randomized, double-blind, placebo-controlled trials. Transl Psychiatry 2020; 10 (1): 117.CrossRefGoogle ScholarPubMed
de Silva, V. A., Suraweera, C., Ratnatunga, S. S., et al. Metformin in prevention and treatment of antipsychotic induced weight gain: A systematic review and meta-analysis. BMC Psychiatry 2016; 16: 341. https://doi.org/10.1186/s12888-016-1049-5.CrossRefGoogle ScholarPubMed
Institute of Medicine. Weighing the options: Criteria for evaluating weight-management programs. Washington: National Academy Press; 1995.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×