Comptes Rendus
Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics
Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 646-660.

Piezoelectric actuators are widely used for precise micro-positioning. The ability of fine positioning is strictly under the effect of hysteresis nonlinear behavior. Simultaneous micro-positioning in multi-dimensions has also attracted much attention in recent years. In addition to hysteresis behavior, a nonlinear dynamic coupling exists between the different degrees of freedom in multi-axis piezoelectric actuators. The nonlinear coupling phenomenon is called the Axes Coupling Effect (ACE). A modified Prandtl–Ishlinskii (PI) operator and its inverse are utilized for both the identification and real time compensation of the hysteresis effect in this article. Considering the PI estimation error and probable un-modeled dynamics, a variable structure controller coupled with the neural network is proposed for position tracking. Due to the model-based structure of the proposed controller, the dynamic model of actuator should be identified. Coupling between nonlinear hysteresis behavior and the linear dynamic model causes a complicated identification. The ACE has also an unknown trend. Eliminating the necessity of dynamic parameters and ACE identification, a Radial Basis Function (RBF) neural network approach would estimate the unknown dynamics of the designed controller. Stability of the controller in the presence of estimated unknown dynamics is demonstrated analytically. Experimental results depict that the proposed approach can achieve precise tracking of multi-frequency trajectories and appropriate estimation of unknown dynamics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.07.003
Mots clés : Control, Piezoelectric actuator, Axes Coupling Effect (ACE)
Hamed Ghafarirad 1, 2 ; S.M. Rezaei 1, 2 ; M. Zareinejad 2 ; M. Hamdi 3 ; R. Jaberzadeh Ansari 1, 2

1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2 New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
3 Department of Engineering Design & Manufacture, Faculty of Engineering, University Malaya, Malaysia
@article{CRMECA_2012__340_9_646_0,
     author = {Hamed Ghafarirad and S.M. Rezaei and M. Zareinejad and M. Hamdi and R. Jaberzadeh Ansari},
     title = {Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {646--660},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2012},
     doi = {10.1016/j.crme.2012.07.003},
     language = {en},
}
TY  - JOUR
AU  - Hamed Ghafarirad
AU  - S.M. Rezaei
AU  - M. Zareinejad
AU  - M. Hamdi
AU  - R. Jaberzadeh Ansari
TI  - Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 646
EP  - 660
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2012.07.003
LA  - en
ID  - CRMECA_2012__340_9_646_0
ER  - 
%0 Journal Article
%A Hamed Ghafarirad
%A S.M. Rezaei
%A M. Zareinejad
%A M. Hamdi
%A R. Jaberzadeh Ansari
%T Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics
%J Comptes Rendus. Mécanique
%D 2012
%P 646-660
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crme.2012.07.003
%G en
%F CRMECA_2012__340_9_646_0
Hamed Ghafarirad; S.M. Rezaei; M. Zareinejad; M. Hamdi; R. Jaberzadeh Ansari. Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics. Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 646-660. doi : 10.1016/j.crme.2012.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.07.003/

[1] F. dellʼIsola; M. Porfiri; S. Vidoli Piezo-electro mechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers, C. R. Mecanique, Volume 331 (2003), pp. 69-76

[2] D. Hughes; J. Wen Preisach modelling of piezoceramic and shape memory alloy hysteresis, Smart Materials and Structures, Volume 6 (1997), pp. 287-300

[3] M. Krasnoselskii; A. Pokrovskii Systems with Hysteresis, Nauka, Moscow, 1983

[4] M. Brokate; J. Sprekels Hysteresis and Phase Transitions, Springer, New York, 1996

[5] A. Visintin Differential Models of Hysteresis, Springer, Berlin, 1994

[6] W.T. Ang; C.N. Riviere; P.K. Khosla Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory tracking applications, IEEE Transactions on Mechatronics, Volume 12 (2007), pp. 1-8

[7] L.G. Garcia-Valdovinos; V. Parra-Vegab; M.A. Arteaga Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay, Robotics and Autonomous Systems, Volume 55 (2007), pp. 609-617

[8] S. Bashash; N. Jalili Robust multiple-frequency trajectory tracking control of piezoelectrically-driven micro/nano-positioning systems, IEEE Trans. Control Syst. Technol., Volume 15 (2007) no. 5, pp. 867-878

[9] S. Bashash; N. Jalili Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages, IEEE/ASME Transactions on Mechatronics, Volume 14 (2009) no. 1, pp. 11-20

[10] Y. Li; O. Xu Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator, IEEE Transactions on Control Systems Technology, Volume 18 (2009), pp. 798-810

[11] H. Ghafarirad; S.M. Rezaei; A. Abdullah; M. Zareinejad; M. Saadat Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators, Precision Engineering, Volume 35 (2011), pp. 271-281

[12] X. Zhang, Y. Tan, R. Dong, Y. Xie, A model based compensator for rate-dependent hysteresis in piezoelectric actuators, in: International Conference on Advanced Intelligent Mechatronics, 2010, pp. 896–901.

[13] S. Yu, B. Shirinzadeh, G. Alici, J. Smith, Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis, in: International Conference on Robotics and Automation, 2005, pp. 3641–3645.

[14] H. Liaw; B. Shirinzadeh; G. Alici; J. Smith Feasibility study of robust neural network motion tracking control of piezoelectric actuation systems for micro/nano manipulation, Recent Progress in Robotics, LNCIS, vol. 370, 2008, pp. 5-19

[15] H. Liaw; B. Shirinzadeh Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation, IEEE/ASME Transactions on Mechatronics, Volume 14 (2009) no. 5, pp. 517-527

[16] M. Zareinejad; S.M. Rezaei; S. Shiry; A. Abdullah Precision control of a piezo-actuated micro telemanipulation system, International Journal of Precision Engineering and Manufacturing, Volume 11 (2010) no. 1, pp. 55-65

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Disturbance rejection-based robust control for micropositioning of piezoelectric actuators

Hamed Ghafarirad; Seyed Mehdi Rezaei; Mohammad Zareinejad; ...

C. R. Méca (2014)


Implementation and experimental tests of an impedance control of pneumatic artificial muscles for isokinetic rehabilitation

Mahdi Chavoshian; Mostafa Taghizadeh; Nima Zamani Meymian

C. R. Méca (2020)


Nonlinear vibration analysis of piezoelectric bending actuators: Theoretical and experimental studies

Pouyan Shahabi; Hamed Ghafarirad; Afshin Taghvaeipour

C. R. Méca (2019)