Skip to main content

Advertisement

Log in

Quantification of correlation between microstructure and mechanical properties of Ni–BaZrxCe0.8−xY0.1Yb0.1O3-δ (x = 0.1, 0.5) cermet anodes by image analysis

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, the effect of sintering temperature on microstructure and mechanical properties of Ni–BaZrxCe0.8−xY0.1Yb0.1O3-δ (Ni–BZCYYb); x = 0.1 and 0.5, cermet anodes for protonic ceramic fuel cells (PCFCs) were investigated. A 2-dimensional (2D) stereological method which involves viable image processing was used to quantify the effect of sintering temperature on the volume fraction and interconnectivity of pores and solid phases between 1300 and 1450 °C. 3-point bending test indicates that bending strength (σ) for Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (Ni–BZCYYb17) are higher than those for Ni–BaZr0.5Ce0.3Y0.1Yb0.1O3-δ (Ni–BZCYYb53) specimens, and the specimens sintered at 1400 °C have highest value of bending strength. To complement the results obtained from the bending strength and image processing, the Weibull modulus (m) values of the Ni–BZCYYb cermets were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available upon reasonable request.

References

  1. D. Kim, I. Jeong, K.J. Kim, K.T. Bae, D. Kim, J. Koo, H. Yu, K.T. Lee, A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures. J. Korean Ceram. Soc. 59, 131–152 (2022). https://doi.org/10.1007/s43207-021-00175-9

    Article  CAS  Google Scholar 

  2. H. Jeong, B. Sharma, S. Jo, Y.H. Kim, J.-H. Myung, Electrochemical characteristics of La0.8Sr0.2MnO3 (LSM)–scandia-stabilized zirconia (ScSZ) composite cathode. J. Korean Ceram. Soc. 59, 473–479 (2022). https://doi.org/10.1007/s43207-022-00200-5

    Article  CAS  Google Scholar 

  3. W. Ye, T.W. Kim, D.-H. Park, Layered double hydroxide nanomaterials for bifunctional ORR/OER electro-catalyst. J. Korean Ceram. Soc. 59, 763–774 (2022). https://doi.org/10.1007/s43207-022-00241-w

    Article  CAS  Google Scholar 

  4. I.Y. Kim, J. Ko, T.-Y. Ahn, H.-W. Cheong, Y.S. Yoon, Energy materials for energy conversion and storage: focus on research conducted in Korea. J. Korean Ceram. Soc. 58, 645–661 (2021). https://doi.org/10.1007/s43207-021-00152-2

    Article  CAS  Google Scholar 

  5. S.-H. Lee, Y.J. Kwak, J.-W. Park, K.-T. Lee, Systematic study on the Ni exsolution behavior of NiAl2O4 catalysts for steam methane reforming. J. Korean Ceram. Soc. 60, 536–546 (2023). https://doi.org/10.1007/s43207-022-00283-0

    Article  CAS  Google Scholar 

  6. L. Mathur, Y. Namgung, H. Kim, S.-J. Song, Recent progress in electrolyte-supported solid oxide fuel cells: a review. J. Korean Ceram. Soc. 60, 614–636 (2023). https://doi.org/10.1007/s43207-023-00296-3

    Article  CAS  Google Scholar 

  7. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  8. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011). https://doi.org/10.1126/science.1204090

    Article  CAS  PubMed  ADS  Google Scholar 

  9. S. Im, J.-H. Lee, H.-I. Ji, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ composite cathode in protonic ceramic fuel cells. J. Korean Ceram. Soc. 58, 351–358 (2021). https://doi.org/10.1007/s43207-021-00109-5

    Article  CAS  Google Scholar 

  10. J. Seo, H.-W. Kim, J.H. Yu, H.J. Park, Electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3 and BaZr0.65Ce0.20Y0.15O3 composite cathodes on Y-doped barium–cerium–zirconium oxide solid electrolyte. J. Korean Ceram. Soc. 59, 217–223 (2022). https://doi.org/10.1007/s43207-021-00169-7

    Article  CAS  Google Scholar 

  11. S. Ahmed, W.W. Kazmi, A. Hussain, M.Z. Khan, S. Bibi, M. Saleem, R.H. Song, Z. Sajid, A. Ullah, M.K. Khan, Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3−δ cathode material for solid oxide fuel cell. J. Korean Ceram. Soc. 60, 272–282 (2023). https://doi.org/10.1007/s43207-022-00261-6

    Article  CAS  Google Scholar 

  12. L. Mathur, I.-H. Kim, A. Bhardwaj, B. Singh, J.-Y. Park, S.-J. Song, Structural and electrical properties of novel phosphate based composite electrolyte for low-temperature fuel cells. Compos. B Eng. 202, 108405 (2020). https://doi.org/10.1016/j.compositesb.2020.108405

    Article  CAS  Google Scholar 

  13. L. Mathur, A. Kumar, I.-H. Kim, H. Bae, J.-Y. Park, S.-J. Song, Novel organic-inorganic polyphosphate based composite material as highly dense and robust electrolyte for low temperature fuel cells. J. Power Sour. 493, 229696 (2021). https://doi.org/10.1016/j.jpowsour.2021.229696

    Article  CAS  Google Scholar 

  14. H.-I. Ji, J.-H. Lee, J.-W. Son, K.J. Yoon, S. Yang, B.-K. Kim, Protonic ceramic electrolysis cells for fuel production: a brief review. J. Korean Ceram. Soc. 57, 480–494 (2020). https://doi.org/10.1007/s43207-020-00059-4

    Article  CAS  Google Scholar 

  15. K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers.pdf. Solid State Ion. 125, 285–302 (2021)

    Article  Google Scholar 

  16. E. Fabbri, D. Pergolesi, E. Traversa, Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. (2010). https://doi.org/10.1088/1468-6996/11/4/044301

    Article  PubMed  PubMed Central  Google Scholar 

  17. J.H. Park, H.-N. Im, K.T. Lee, Understanding redox cycling behavior of Ni–YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis. J. Korean Ceram. Soc. 58, 606–613 (2021). https://doi.org/10.1007/s43207-021-00136-2

    Article  CAS  Google Scholar 

  18. S. Jo, B. Sharma, D.-H. Park, J. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57, 135–151 (2020). https://doi.org/10.1007/s43207-020-00022-3

    Article  CAS  Google Scholar 

  19. S.-K. Rha, M.-J. Lee, Y.-S. Lee, Catalytic characteristics of Ni(B)-coated YSZ powder by neutral electroless plating. J. Korean Ceram. Soc. 57, 338–344 (2020). https://doi.org/10.1007/s43207-020-00034-z

    Article  CAS  Google Scholar 

  20. S. Choi, Electrochemical properties of Sr-doped layered perovskite as a promising anode material for direct hydrocarbon SOFCs. J. Korean Ceram. Soc. 57, 409–415 (2020). https://doi.org/10.1007/s43207-020-00045-w

    Article  CAS  Google Scholar 

  21. W. Li, B. Guan, L. Ma, S. Hu, N. Zhang, X. Liu, High performing triple-conductive Pr2NiO4+: δ anode for proton-conducting steam solid oxide electrolysis cell. J. Mater. Chem. A 6, 18057–18066 (2018). https://doi.org/10.1039/c8ta04018d

    Article  CAS  Google Scholar 

  22. K. Bae, H.-S. Noh, D.Y. Jang, J. Hong, H. Kim, K.J. Yoon, J.-H. Lee, B.-K. Kim, J.H. Shim, J.-W. Son, High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix. J. Mater. Chem. A 4, 6395–6404 (2016). https://doi.org/10.1039/c5ta10670b

    Article  CAS  Google Scholar 

  23. M.A. Azimova, S. Mcintosh, On the choice of anode electrocatalyst for alcohol fuelled proton conducting solid oxide fuel cells. J. Electrochem. Soc. 158, B1532 (2011). https://doi.org/10.1149/2.101112jes

    Article  CAS  Google Scholar 

  24. E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39, 4355–4369 (2010). https://doi.org/10.1039/b902343g

    Article  CAS  PubMed  Google Scholar 

  25. J. Dailly, G. Railades, M. Ancelin, P. Pers, M. Marrony, High performing BaCe0.8Zr0.1Y0.1O3-Δ-Sm0.5Sr0.5CoO3-Δ based protonic ceramic fuel cell. J. Power Sour. 361, 221–226 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.089

    Article  CAS  ADS  Google Scholar 

  26. A. Tarutin, J. Lyagaeva, A. Farlenkov, S. Plaksin, G. Vdovin, A. Demin, D. Medvedev, A reversible protonic ceramic cell with symmetrically designed Pr2NiO4+δ-based electrodes: fabrication and electrochemical features. Materials (Basel) 12, 118 (2019). https://doi.org/10.3390/ma12010118

    Article  CAS  ADS  Google Scholar 

  27. L. Bi, E. Fabbri, E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 16, 37–40 (2012). https://doi.org/10.1016/j.elecom.2011.12.023

    Article  CAS  Google Scholar 

  28. Y. Chen, S. Yoo, Y. Choi, J.H. Kim, Y. Ding, K. Pei, R. Murphy, Y. Zhang, B. Zhao, W. Zhang, H. Chen, Y. Chen, W. Yuan, C. Yang, M. Liu, A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energy Environ. Sci. 11, 2458–2466 (2018). https://doi.org/10.1039/c8ee01140k

    Article  CAS  Google Scholar 

  29. C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2

    Article  CAS  ADS  Google Scholar 

  30. C. Chen, Y. Dong, L. Li, Z. Wang, M. Liu, B.H. Rainwater, Y. Bai, Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3−Δ proton conducting electrolyte. Int. J. Hydrog. Energy 44, 16887–16897 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.264

    Article  CAS  Google Scholar 

  31. C. Chen, M. Liu, Y. Bai, L. Yang, E. Xie, M. Liu, Anode-supported tubular SOFCs based on BaZr0.1Ce 0.7Y0.1Yb0.1O3-δ electrolyte fabricated by dip coating. Electrochem. Commun. 13, 615–618 (2011). https://doi.org/10.1016/j.elecom.2011.03.025

    Article  CAS  Google Scholar 

  32. P. Pers, V. Mao, M. Tailades, G. Tailades, Electrochemical behavior and performances of Ni–BaZr0·1Ce0·7Y0.1Yb0.1O3−δ cermet anodes for protonic ceramic fuel cell. Int. J. Hydrog. Energy 43, 2402–2409 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.024

    Article  CAS  Google Scholar 

  33. Y. Zhang, D. Xie, B. Chi, J. Pu, J. Li, D. Yan, Basic properties of proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) material. Asia Pac. J. Chem. Eng. 14, 1–10 (2019). https://doi.org/10.1002/apj.2322

    Article  CAS  Google Scholar 

  34. I.-H. Kim, D.-K. Lim, H. Bae, A. Bhardwaj, J.-Y. Park, S.-J. Song, Determination of partial conductivities and computational analysis of the theoretical power density of BaZr0.1Ce0.7Y0.1Yb0.1O3-:δ (BZCYYb1711) electrolyte under various PCFC conditions. J. Mater. Chem. A 7, 21321–21328 (2019). https://doi.org/10.1039/c9ta07135k

    Article  CAS  Google Scholar 

  35. S. Sun, O. Awadallah, Z. Cheng, Poisoning of Ni-based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants. J. Power. Sour. 378, 255–263 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.056

    Article  CAS  ADS  Google Scholar 

  36. L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7y0.2-XYb xO3-δ. Science 326, 126–129 (2009). https://doi.org/10.1126/science.1174811

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Y. Guo, Y. Lin, R. Ran, Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. J. Power Sour. 193, 400–407 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.044

    Article  CAS  ADS  Google Scholar 

  38. A.R. Hanifi, N.K. Sandhu, T.H. Etsell, J.-L. Luo, P. Sarkar, Fabrication and characterization of a tubular ceramic fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte. J. Power Sour. 341, 264–269 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.010

    Article  CAS  ADS  Google Scholar 

  39. J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin, P. Tsiakars, BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 251, 554–561 (2017). https://doi.org/10.1016/j.electacta.2017.08.149

    Article  CAS  Google Scholar 

  40. Z. Shi, W. Sun, W. Liu, Synthesis and characterization of BaZr0.3Ce0.5Y 0.2-xYbxO3-δ proton conductor for solid oxide fuel cells. J. Power Sour. 245, 953–957 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.060

    Article  CAS  ADS  Google Scholar 

  41. S.-M. Bae, Y.-H. Kim, Y.-H. You, J.-H. Hwang, Extraction of quantitative parameters for describing the microstructure of solid oxide fuel cells. Microsc. Microanal. 19, 140–144 (2013). https://doi.org/10.1017/S1431927613012518

    Article  CAS  PubMed  Google Scholar 

  42. S.-M. Bae, H.-Y. Jung, J.-H. Lee, J.-H. Hwang, Microstructural characterization of composite electrode materials in solid oxide fuel cells via image processing analysis. J. Korean Ceram. Soc. 47, 86–91 (2010). https://doi.org/10.4191/KCERS.2010.47.1.086

    Article  CAS  Google Scholar 

  43. Z. Jiao, N. Shikazono, Prediction of nickel morphological evolution in composite solid oxide fuel cell anode using modified phase field model. J. Electrochem. 165, F55–F63 (2018). https://doi.org/10.1149/2.0681802jes

    Article  CAS  Google Scholar 

  44. J.W. Kim, K. Bae, H.J. Kim, J.-W. Son, N. Kim, S. Stenfelt, F.B. Prinz, J.H. Shim, Three-dimensional thermal stress analysis of the re-oxidized Ni-YSZ anode functional layer in solid oxide fuel cells. J. Alloys Compd. 752, 148–154 (2018). https://doi.org/10.1016/j.jallcom.2018.04.176

    Article  CAS  Google Scholar 

  45. D. Kennouche, Y.-C.K. Chen-Wiegart, K.J. Yakal-Kremski, J. Wang, J.W. Gibbs, P.W. Voorhees, S.A. Barnett, Observing the microstructural evolution of Ni-Yttria-stabilized zirconia solid oxide fuel cell anodes. Acta Mater. 103, 204–210 (2016). https://doi.org/10.1016/j.actamat.2015.09.055

    Article  CAS  ADS  Google Scholar 

  46. S.D. Angelis, P.S. Jørgensen, E.H.R. Tsai, M. Holler, K. Kreka, J.R. Bowen, Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography. J. Power. Sour. 383, 72–79 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.031

    Article  CAS  Google Scholar 

  47. K.-C. Lee, M.-B. Choi, D.-K. Lim, B. Singh, S.-J. Song, Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes. J. Power. Sour. 232, 224–233 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.001

    Article  CAS  Google Scholar 

  48. M.-B. Choi, B. Singh, E.D. Wachsman, S.-J. Song, Performance of La0.1Sr0.9Co0.8Fe 0.2O3-δ and La0.1Sr0.9Co 0.8Fe0.2O3-δ-Ce0.9Gd 0.1O2 oxygen electrodes with Ce0.9Gd 0.1O2 barrier layer in reversible solid oxide fuel cells. J. Power Sour. 239, 361–373 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.154

    Article  CAS  Google Scholar 

  49. Y. Liu, L. Yang, M. Liu, Z. Tang, M. Liu, Enhanced sinterability of BaZr0.1Ce0.7Y 0.1Yb0.1O3-δ by addition of nickel oxide. J. Power Sour. 196, 9980–9984 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.047

    Article  CAS  ADS  Google Scholar 

  50. A. VahidMohammadi, Z. Cheng, Fundamentals of synthesis, sintering issues, and chemical stability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3-δ proton conducting electrolyte for SOFCs. J. Electrochem. Soc. 162, F803–F811 (2015). https://doi.org/10.1149/2.0021508jes

    Article  CAS  Google Scholar 

  51. K. Yang, J.X. Wang, Y.J. Xue, M.S. Wang, C.R. He, Q. Wang, H. Miao, W.G. Wang, Synthesis, sintering behavior and electrical properties of Ba(Zr 0.1Ce0.7Y0.2)O3-δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1)O 3-δ proton conductors. Ceram. Int. 40, 15073–15081 (2014). https://doi.org/10.1016/j.ceramint.2014.06.115

    Article  CAS  Google Scholar 

  52. B. Mirfakhraei, F. Ramezanipour, S. Paulson, V. Birss, V. Thangadurai, Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr 0.1 Ce 0.7 Y 0.1 M 0.1 O 3-δ (M = Fe, Ni Co, and Yb). Front. Energy Res. 2, 1–10 (2014). https://doi.org/10.3389/fenrg.2014.00009

    Article  Google Scholar 

  53. K.-R. Lee, S.H. Choi, J. Kim, H.-W. Lee, J.-H. Lee, Viable image analyzing method to characterize the microstructure and the properties of the Ni/YSZ cermet anode of SOFC. J. Power. Sour. 140, 226–234 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.031

    Article  CAS  ADS  Google Scholar 

  54. S.-M. Bae, K.-S. Kang, C.-S. Park, J.-H. Hwang, Microstructural characterization of multiphase GDC/NiO composites using image processing. J. Ceram. Process. Res. 10, 710–715 (2009)

    Google Scholar 

  55. M.A. Kaiyum, A. Ahmed, M.H. Hasnat, S. Rahman, Effect of MgO on physical and mechanical properties of dental porcelain. J. Korean Ceram. Soc. 58, 42–49 (2021). https://doi.org/10.1007/s43207-020-00083-4

    Article  CAS  Google Scholar 

  56. N.Y. Mohammed, M.M.S. Wahsh, I.T. Motawea, H.A. Essawy, Fabrication and characterization of polymer-infiltrated ceramic network materials based on nano-tetragonal zirconia. J. Korean Ceram. Soc. 58, 359–372 (2021). https://doi.org/10.1007/s43207-020-00102-4

    Article  CAS  Google Scholar 

  57. K.K. Kandi, G. Punugupati, P. Madhukar, C.S.P. Rao, Effect of boron nitride (BN) on mechanical and dielectric properties of fused silica ceramic composites. J. Korean Ceram. Soc. 59, 565–577 (2022). https://doi.org/10.1007/s43207-021-00184-8

    Article  CAS  Google Scholar 

  58. A. Wang, S. Wang, H. Yin, P. Zhou, D. Liu, Study on the pore/scratch-strength response of ZrB2–SiC ceramic via laser processing. J. Korean Ceram. Soc. 59, 803–810 (2022). https://doi.org/10.1007/s43207-022-00219-8

    Article  CAS  Google Scholar 

  59. C.A. Klein, Characteristic strength, Weibull modulus, and failure probability of fused silica glass. Opt. Eng. 48, 113401 (2009). https://doi.org/10.1117/1.3265716

    Article  CAS  ADS  Google Scholar 

  60. L. Wang, R. Dou, G. Wang, Y. Li, M. Bai, D. Hall, Y. Chen, Fracture strength and Weibull analysis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen transport membranes evaluated by biaxial and uniaxial bending tests. Mater. Sci. Eng. A 670, 292–299 (2016). https://doi.org/10.1016/j.msea.2016.06.029

    Article  CAS  Google Scholar 

  61. X.-V. Nguyen, C.-T. Chang, G.-B. Jung, S.-H. Chan, W.C.-W. Huang, K.-J. Hsiao, W.-T. Lee, S.-W. Chang, I.-C. Kao, Effect of sintering temperature and applied load on anode-supported electrodes for SOFC application. Energies 9, 701 (2016). https://doi.org/10.3390/en9090701

    Article  CAS  Google Scholar 

  62. J. Bu, P.G. Jönsson, Z. Zhao, The effect of NiO on the conductivity of BaZr0.5Ce0.3Y0.2O3-δ based electrolytes. RSC Adv. 6, 62368–62377 (2016). https://doi.org/10.1039/C6RA09936J

    Article  CAS  ADS  Google Scholar 

  63. M. Al-Amin, H.T. Mumu, S. Sarker, M.Z. Alam, M.A. Gafur, Effects of sintering temperature and zirconia content on the mechanical and microstructural properties of MgO, TiO2 and CeO2 doped alumina–zirconia (ZTA) ceramic. J. Korean Ceram. Soc. 60, 141–154 (2023). https://doi.org/10.1007/s43207-022-00194-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Core Technology Development Program to Future Hydrogen Energy and Basic Science Research Program through the National Research Foundation of Korea (NRF-2021M3I3A108483012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ju Song.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, EI., Singh, B. et al. Quantification of correlation between microstructure and mechanical properties of Ni–BaZrxCe0.8−xY0.1Yb0.1O3-δ (x = 0.1, 0.5) cermet anodes by image analysis. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-023-00363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-023-00363-9

Keywords

Navigation