Skip to main content

Advertisement

Log in

Protonic ceramic electrolysis cells for fuel production: a brief review

Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Proton-conducting oxides exhibit significant hydrogen ion (proton) conductivity at intermediate temperatures around 300–600 °C. Owing to their distinguished features compared to high-temperature oxygen ion-conducting oxide electrolytes and low-temperature proton-conducting polymer electrolytes, diverse electrochemical applications based on the proton-conducting oxides have attracted great attention for efficient energy conversions. This review particularly aims to introduce protonic ceramic electrolysis cells (PCECs) and their extended applications. The constituent materials, recent developments, remaining issues in PCECs as well as the application integrated with PCEC for electrochemical ammonia synthesis will be presented. In addition, for each section, the relevant prospects and recommendations for future research directions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. I. Yuksel, K. Kaygusuz, Renewable energy sources for clean and sustainable energy policies in Turkey. Renew. Sustain. Energy Rev. 15(8), 4132–4144 (2011)

    Google Scholar 

  2. G.-J. Cho, C.-H. Kim, Y.-S. Oh, M.-S. Kim, J.-S. Kim, Planning for the future: Optimization-based distribution planning strategies for integrating distributed energy resources. IEEE Power Energ. Mag. 16(6), 77–87 (2018)

    Google Scholar 

  3. E. Commission Energy roadmap 2050. Publications Office of the European Union (2012)

  4. C. Wulf, J. Linßen, P. Zapp, Review of power-to-gas projects in Europe. Energy Procedia 155, 367–378 (2018)

    Google Scholar 

  5. K. Harrison, G. Martin, T. Ramsden, W. Kramer, F. Novachek, Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2009)

  6. Power-to-Gas: The Case for Hydrogen White Paper. California Hydrogen Business Council (2015)

  7. M. Ni, M.K. Leung, D.Y. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 33(9), 2337–2354 (2008)

    CAS  Google Scholar 

  8. S.Y. Gómez, D. Hotza, Current developments in reversible solid oxide fuel cells. Renew. Sustain. Energy Rev. 61, 155–174 (2016)

    Google Scholar 

  9. H.-W. Lee, H.-I. Ji, J.-H. Lee, B.-K. Kim, K.J. Yoon, J.-W. Son, H.-W. Lee, H.-I. Ji, J.-H. Lee, B.-K. Kim, Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs). J. Korean Ceram. Soc. 56(2), 130–145 (2019)

    CAS  Google Scholar 

  10. K.-D. Kreuer, Proton-conducting oxides. Annu. Rev. Mater. Res. 33(1), 333–359 (2003)

    CAS  Google Scholar 

  11. H. Iwahara, Proton conducting ceramics and their applications. Solid State Ionics 86, 9–15 (1996)

    Google Scholar 

  12. H. Iwahara, Hydrogen pumps using proton-conducting ceramics and their applications. Solid State Ionics 125(1–4), 271–278 (1999)

    CAS  Google Scholar 

  13. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3, 359–363 (1981)

    Google Scholar 

  14. H. Iwahara, H. Uchida, N. Maeda, High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J. Power Sources 7(3), 293–301 (1982)

    CAS  Google Scholar 

  15. H. Iwahara, H. Uchida, S. Tanaka, High temperature-type proton conductive solid oxide fuel cells using various fuels. J. Appl. Electrochem. 16(5), 663–668 (1986)

    CAS  Google Scholar 

  16. H. Iwahara, H. Uchida, I. Yamasaki, High-temperature steam electrolysis using SrCeO3-based proton conductive solid electrolyte. Int. J. Hydrogen Energy 12(2), 73–77 (1987)

    CAS  Google Scholar 

  17. H. Uchida, N. Maeda, H. Iwahara, Steam concentration cell using a high temperature type proton conductive solid electrolyte. J. Appl. Electrochem. 12(6), 645–651 (1982)

    CAS  Google Scholar 

  18. K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics 125(1–4), 355–367 (1999)

    CAS  Google Scholar 

  19. K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138(1–2), 91–98 (2000)

    CAS  Google Scholar 

  20. Z. Zhong, Stability and conductivity study of the BaCe0. 9−xZrxY0. 1O2. 95 systems. Solid State Ionics 178(3–4), 213–220 (2007)

    CAS  Google Scholar 

  21. S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, R. Gerbasi, High conductivity and chemical stability of BaCe 1–x− y Zr x Y y O 3− δ proton conductors prepared by a sol–gel method. J. Mater. Chem. 18(42), 5120–5128 (2008)

    CAS  Google Scholar 

  22. Y. Guo, Y. Lin, R. Ran, Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZryCe0. 8− yY0. 2O3− δ (0.0≤ y≤ 0.8) for fuel cell applications. J. Power Sources 193(2), 400–407 (2009)

    CAS  Google Scholar 

  23. C.-S. Tu, R. Chien, V.H. Schmidt, S.-C. Lee, C.-C. Huang, C.-L. Tsai, Thermal stability of Ba (Zr 0.8–x Ce x Y 0.2) O 2.9 ceramics in carbon dioxide. J. Appl. Phys. 105(10), 103504 (2009)

    Google Scholar 

  24. J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, Insights on thermal and transport features of BaCe0. 8− xZrxY0. 2O3− δ proton-conducting materials. J. Power Sources 278, 436–444 (2015)

    CAS  Google Scholar 

  25. T. Norby, Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125(1–4), 1–11 (1999)

    CAS  Google Scholar 

  26. E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba (Ce0. 8− xZrx) Y0. 2O3− δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179(15–16), 558–564 (2008)

    CAS  Google Scholar 

  27. N.Q. Minh, Ceramic fuel cells. J. Am. Ceram. Soc. 76(3), 563–588 (1993)

    CAS  Google Scholar 

  28. T. Schober, W. Schilling, H. Wenzl, Defect model of proton insertion into oxides. Solid State Ionics 86, 653–658 (1996)

    Google Scholar 

  29. J.-S. Choi, D.-K. Lee, H.-I. Yoo, Defect Structure and Electrical Conductivities of SrCe0.95Yb0.05O3. J. Korean Ceram. Soc. 37(3), 271–279 (2000)

    CAS  Google Scholar 

  30. H.-I. Yoo, J.-K. Kim, C.-E. Lee, Electrical conductivity relaxations and chemical diffusivities of BaCe0. 95Yb0. 05O2. 975 upon hydration and oxidation. J. Electrochem. Soc. 156(1), B66–B73 (2009)

    CAS  Google Scholar 

  31. H.-I. Ji, B.-K. Kim, J.H. Yu, S.-M. Choi, H.-R. Kim, J.-W. Son, H.-W. Lee, J.-H. Lee, Three dimensional representations of partial ionic and electronic conductivity based on defect structure analysis of BaZr0. 85Y0. 15O3− δ. Solid State Ionics 203(1), 9–17 (2011)

    CAS  Google Scholar 

  32. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600° C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012)

    CAS  Google Scholar 

  33. V. Esposito, E. Traversa, Design of electroceramics for solid oxides fuel cell applications: playing with ceria. J. Am. Ceram. Soc. 91(4), 1037–1051 (2008)

    CAS  Google Scholar 

  34. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3. J. Electrochem. Soc. 147(4), 1332–1337 (2000)

    CAS  Google Scholar 

  35. O.H. Kwon, G.M. Choi, Electrical conductivity of thick film YSZ. Solid State Ionics 177(35–36), 3057–3062 (2006)

    CAS  Google Scholar 

  36. B.C. Steele, A. Heinzel, in Materials for fuel-cell technologies. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011) pp. 224–231

  37. S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017)

    CAS  Google Scholar 

  38. C. Duan, J. Huang, N. Sullivan, R. O'Hayre, Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7(1), 011314 (2020)

    CAS  Google Scholar 

  39. D. Medvedev, J. Lyagaeva, E. Gorbova, A. Demin, P. Tsiakaras, Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog. Mater Sci. 75, 38–79 (2016)

    CAS  Google Scholar 

  40. E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39(11), 4355–4369 (2010)

    CAS  Google Scholar 

  41. T. Matsui, R. Kishida, J.-Y. Kim, H. Muroyama, K. Eguchi, Performance deterioration of Ni–YSZ anode induced by electrochemically generated steam in solid oxide fuel cells. J. Electrochem. Soc. 157(5), B776–B781 (2010)

    CAS  Google Scholar 

  42. R. Knibbe, M.L. Traulsen, A. Hauch, S.D. Ebbesen, M. Mogensen, Solid oxide electrolysis cells: degradation at high current densities. J. Electrochem. Soc. 157(8), B1209–B1217 (2010)

    CAS  Google Scholar 

  43. S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12(1), 206–215 (2019)

    CAS  Google Scholar 

  44. C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nature Energy 4(3), 230–240 (2019)

    CAS  Google Scholar 

  45. P. Babilo, S.M. Haile, Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88(9), 2362–2368 (2005)

    CAS  Google Scholar 

  46. P. Babilo, T. Uda, S.M. Haile, Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 22(5), 1322–1330 (2007)

    CAS  Google Scholar 

  47. H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon, H. Kim, D. Shin, H.-I. Ji, J.-H. Lee, A 5× 5 cm 2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600° C. Nat. Energy 3(10), 870–875 (2018)

    CAS  Google Scholar 

  48. S.M. Choi, J.-H. Lee, H. An, J. Hong, H. Kim, K.J. Yoon, J.-W. Son, B.-K. Kim, H.-W. Lee, J.-H. Lee, Fabrication of anode-supported protonic ceramic fuel cell with Ba (Zr0. 85Y0. 15) O3− δ–Ba (Ce0. 9Y0. 1) O3− δ dual-layer electrolyte. Int. J. Hydrogen Energy 39(24), 12812–12818 (2014)

    CAS  Google Scholar 

  49. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44(1), 1–39 (2009)

    CAS  Google Scholar 

  50. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015)

    CAS  Google Scholar 

  51. Z. Shi, W. Sun, W. Liu, Synthesis and characterization of BaZr0. 3Ce0. 5Y0. 2− xYbxO3− δ proton conductor for solid oxide fuel cells. J. Power Sources 245, 953–957 (2014)

    CAS  Google Scholar 

  52. T. Wu, R. Peng, C. Xia, Sm0. 5Sr0. 5CoO3− δ–BaCe0. 8Sm0. 2O3-δ composite cathodes for proton-conducting solid oxide fuel cells. Solid State Ionics 179(27–32), 1505–1508 (2008)

    CAS  Google Scholar 

  53. N. Nasani, D. Ramasamy, S. Mikhalev, A.V. Kovalevsky, D.P. Fagg, Fabrication and electrochemical performance of a stable, anode supported thin BaCe0. 4Zr0. 4Y0. 2O3-δ electrolyte Protonic Ceramic Fuel Cell. J. Power Sources 278, 582–589 (2015)

    CAS  Google Scholar 

  54. L. Bi, E. Fabbri, E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 16(1), 37–40 (2012)

    CAS  Google Scholar 

  55. B.H. Rainwater, M. Liu, M. Liu, A more efficient anode microstructure for SOFCs based on proton conductors. Int. J. Hydrogen Energy 37(23), 18342–18348 (2012)

    CAS  Google Scholar 

  56. M. Liu, J. Gao, X. Liu, G. Meng, High performance of anode supported BaZr0. 1Ce0. 7Y0. 2O3− δ (BZCY) electrolyte cell for IT-SOFC. Int. J. Hydrogen Energy 36(21), 13741–13745 (2011)

    CAS  Google Scholar 

  57. L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20(17), 3280–3283 (2008)

    CAS  Google Scholar 

  58. Y. Guo, R. Ran, Z. Shao, A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. Int. J. Hydrogen Energy 36(2), 1683–1691 (2011)

    CAS  Google Scholar 

  59. Y. Yoo, N. Lim, Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J. Power Sources 229, 48–57 (2013)

    CAS  Google Scholar 

  60. H. An, D. Shin, H.-I. Ji, H. An, D. Shin, H.-I. Ji, Effect of nickel addition on sintering behavior and electrical conductivity of BaCe 0.35 Zr 0.5 Y 0.15 O 3-δ. J. Korean Ceram. Soc. 56(1), 91–97 (2018)

    Google Scholar 

  61. E. Kim, Y. Yamazaki, S. Haile, H.-I. Yoo, Effect of NiO sintering-aid on hydration kinetics and defect-chemical parameters of BaZr0. 8Y0. 2O3− Δ. Solid State Ionics 275, 23–28 (2015)

    CAS  Google Scholar 

  62. J.S. Reed, Principles of ceramics processing (1995)

  63. J. Shin, J.H. Park, J. Kim, K.J. Yoon, J.-W. Son, J.-H. Lee, H.-W. Lee, H.-I. Ji, Suppression of processing defects in large-scale anode of planar solid oxide fuel cell via multi-layer roll calendering. J. Alloy. Compd. 812, 152113 (2020)

    CAS  Google Scholar 

  64. J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H. Song, J.-H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158(3–4), 225–232 (2003)

    CAS  Google Scholar 

  65. R.J. Braun, A. Dubois, K. Ferguson, C. Duan, C. Karakaya, R.J. Kee, H. Zhu, N.P. Sullivan, E. Tang, M. Pastula, Development of kW-Scale Protonic Ceramic Fuel Cells and Systems. ECS Trans. 91(1), 997–1008 (2019)

    CAS  Google Scholar 

  66. S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy 3(3), 202 (2018)

    CAS  Google Scholar 

  67. A. Løken, S. Ricote, S. Wachowski, Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 8(9), 365 (2018)

    Google Scholar 

  68. S.-Y. Park, H.-I. Ji, H.-R. Kim, K.J. Yoon, J.-W. Son, B.-K. Kim, H.-J. Je, H.-W. Lee, J.-H. Lee, Structural optimization of (La, Sr) CoO3-based multilayered composite cathode for solid-oxide fuel cells. J. Power Sources 228, 97–103 (2013)

    CAS  Google Scholar 

  69. H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C.J. Orme, L. Wang, Y. Zhang, Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11(1), 1–11 (2020)

    Google Scholar 

  70. M. Oishi, S. Akoshima, K. Yashiro, K. Sato, J. Mizusaki, T. Kawada, Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3 Part 1: The defect concentration of BaCe0. 9M0. 1O3− δ (M= Y and Yb). Solid State Ionics 180(2–3), 127–131 (2009)

    CAS  Google Scholar 

  71. Y. Yamazaki, P. Babilo, S.M. Haile, Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater. 20(20), 6352–6357 (2008)

    CAS  Google Scholar 

  72. D. Poetzsch, R. Merkle, J. Maier, Proton uptake in the H+-SOFC cathode material Ba0. 5Sr0. 5Fe0. 8Zn0. 2O3− δ: transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 182, 129–143 (2015)

    CAS  Google Scholar 

  73. D. Poetzsch, R. Merkle, J. Maier, Stoichiometry variation in materials with three mobile carriers—thermodynamics and transport kinetics exemplified for protons, oxygen vacancies, and holes. Adv. Func. Mater. 25(10), 1542–1557 (2015)

    CAS  Google Scholar 

  74. A. Skodra, M. Stoukides, Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics 180(23–25), 1332–1336 (2009)

    CAS  Google Scholar 

  75. D.S. Yun, J.H. Joo, J.H. Yu, H.C. Yoon, J.-N. Kim, C.-Y. Yoo, Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J. Power Sources 284, 245–251 (2015)

    CAS  Google Scholar 

  76. F. Kosaka, T. Nakamura, J. Otomo, Electrochemical ammonia synthesis using mixed protonic-electronic conducting cathodes with exsolved ru-nanoparticles in proton conducting electrolysis cells. J. Electrochem. Soc. 164(13), F1323–F1330 (2017)

    CAS  Google Scholar 

  77. V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, An Electrochemical Haber-Bosch Process. Joule 4(1), 142–158 (2020)

    CAS  Google Scholar 

  78. S. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. Malerød-Fjeld, P. Vestre, W. Coors, A. Martínez, T. Norby, J. Serra, Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353(6299), 563–566 (2016)

    CAS  Google Scholar 

  79. H. Malerød-Fjeld, D. Clark, I. Yuste-Tirados, R. Zanón, D. Catalán-Martinez, D. Beeaff, S.H. Morejudo, P.K. Vestre, T. Norby, R. Haugsrud, Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2(12), 923–931 (2017)

    Google Scholar 

  80. D. Ding, Y. Zhang, W. Wu, D. Chen, M. Liu, T. He, A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane. Energy Environ. Sci. 11(7), 1710–1716 (2018)

    CAS  Google Scholar 

  81. S. Giddey, S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38(34), 14576–14594 (2013)

    CAS  Google Scholar 

  82. R. Lan, J.T. Irvine, S. Tao, Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 37(2), 1482–1494 (2012)

    CAS  Google Scholar 

  83. T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018)

    Google Scholar 

  84. H. Liu, Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chin. J. Catal. 35(10), 1619–1640 (2014)

    CAS  Google Scholar 

  85. C.J. Van der Ham, M.T. Koper, D.G. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43(15), 5183–5191 (2014)

    Google Scholar 

  86. E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J.K. Nørskov, A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction. Phys. Chem. Chem. Phys. 14(3), 1235–1245 (2012)

    CAS  Google Scholar 

  87. V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017)

    CAS  Google Scholar 

  88. G. Marnellos, M. Stoukides, Ammonia synthesis at atmospheric pressure. Science 282(5386), 98–100 (1998)

    CAS  Google Scholar 

  89. M. Ouzounidou, A. Skodra, C. Kokkofitis, M. Stoukides, Catalytic and electrocatalytic synthesis of NH3 in a H+ conducting cell by using an industrial Fe catalyst. Solid State Ionics 178(1–2), 153–159 (2007)

    CAS  Google Scholar 

  90. C. Yiokari, G. Pitselis, D. Polydoros, A. Katsaounis, C. Vayenas, High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J. Phys. Chem. A 104(46), 10600–10602 (2000)

    CAS  Google Scholar 

  91. I.J. McPherson, T. Sudmeier, J. Fellowes, S.C.E. Tsang, Materials for electrochemical ammonia synthesis. Dalton Trans. 48(5), 1562–1568 (2019)

    CAS  Google Scholar 

  92. I.A. Amar, R. Lan, C.T. Petit, S. Tao, Solid-state electrochemical synthesis of ammonia: a review. J. Solid State Electrochem. 15(9), 1845 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), a granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20173010032140), and the institutional research program of the Korea Institute of Science and Technology (No. 2E30220 and 2V08440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Il Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, HI., Lee, JH., Son, JW. et al. Protonic ceramic electrolysis cells for fuel production: a brief review. J. Korean Ceram. Soc. 57, 480–494 (2020). https://doi.org/10.1007/s43207-020-00059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00059-4

Keywords

Navigation