Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T16:02:09.709Z Has data issue: false hasContentIssue false

Genesis of Palygorskite in the Neogene Baiyanghe Formation in Yangtaiwatan Basin, Northwest China, Based on the Mineralogical Characteristics and Occurrence of Enriched Trace Elements and Ree

Published online by Cambridge University Press:  01 January 2024

Shuai Zhang*
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Lihui Liu
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Qinfu Liu
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Bingjie Zhang
Affiliation:
Management Committee of Industrial Park in Linze County of Gansu Province, Linze, Zhangye 734200, China
Zhichuan Qiao
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
Brian J. Teppen
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
*
*E-mail address of corresponding author: szhang@cumtb.edu.cn

Abstract

Palygorskite-rich mudstone interbedded with gypsum occurs in the Neogene Baiyanghe Formation in the Yangtaiwatan basin, northwest China, but the genesis of palygorskite in the mudstone is unclear. The objective of the present study was to clarify the manner by which the palygorskite evolved by analyzing the mineralogical and geochemical characteristics of the mudstone. The mineralogical composition of bulk-rock mudstone consisted of clay minerals, quartz, feldspar, dolomite, calcite, and gypsum. Palygorskite is dominant in the clay fraction together with illite and accessory chlorite and kaolinite. The interwoven rod-like palygorskite aggregates and delicate palygorskite particles indicated an authigenic origin. The bulk rock of palygorskite-rich mudstone was rich in the trace elements Cs, U, B, Li, Sb, Bi, and As, which, together with REE, all showed very positive correlation with major element oxides Al2O3, Fe2O3, MgO, K2O, and TiO2 of the mudstone, indicating that the REE and trace elements occurred mainly in the clay minerals. The detrital illite, chlorite, and kaolinite were the main original host of the REE and enriched trace elements. Statistical analyses showed that the authigenic palygorskite had strong affinity to such elements compared to the detrital clay minerals. In addition, the chondrite-normalized REE of the bulk mudstone showed essentially the same pattern irrespective of the proportions of detrital illite, kaolinite, chlorite, and authigenic palygorskite present in the samples. Thus, the conclusion reached was that palygorskite was generated from the dissolution of detrital clay minerals. The REE and enriched trace elements in authigenic palygorskite were inherited from the detrital clay minerals.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, T. D., Haynes, J. R., & Walker, C. T. (1965). Boron in Holocene illites of the Dovey estuary, Wales, and its relationship to palaeosalinity in cyclothems. Sedimentology, 4, 189195.CrossRefGoogle Scholar
Al-Bakri, D., Khalaf, F., & Al-Ghadban, A. (1984). Mineralogy, genesis, and sources of surficial sediments in the Kuwait marine environment, northern Arabian Gulf. Journal of Sedimentary Research, 54, 12661279.Google Scholar
Álvarez, A., Santarén, J., Esteban-Cubillo, A., & Aparicio, P. (2011). Current industrial applications of palygorskite and sepiolite. In Galán, E. & Singer, A. (Eds.), Developments in Clay Science (Vol. 3, pp. 281298). Amsterdam: Elsevier.Google Scholar
Badraoui, M., Bloom, P. R., & Bouabid, R. (1992). Palygorskitesmectite association in a Xerochrept of the high Chaouia region of Morocco. Soil Science Society of America Journal, 56, 16401646.CrossRefGoogle Scholar
Bowles, F. A., Angino, E. A., Hosterman, J. W., & Galle, O. K. (1971). Precipitation of deep-sea palygorskite and sepiolite. Earth and Planetary Science Letters, 11, 324332.CrossRefGoogle Scholar
Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In P. Henderson (Ed.), Developments in Geochemistry (pp. 63114). Amsterdam: Elsevier.CrossRefGoogle Scholar
Bradley, W. F. (1940). The structural scheme of attapulgite. American Mineralogist, 25, 405410.Google Scholar
Brindley, G. W. (1980). Quantitative X-ray analysis of clays. In Brindley, G. W. & Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification (pp. 411438). London: Mineralogical Society.CrossRefGoogle Scholar
Callen, R. A. (1984). Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. In Singer, A. & Galán, E. (Eds.), Developments in Sedimentology (Vol. 37, pp. 137). Amsterdam: Elsevier.Google Scholar
Chahi, A., Duplay, J., & Lucas, J. (1993). Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): chemical characteristics and origin of formation. Clays and Clay Minerals, 41, 401411.CrossRefGoogle Scholar
Chen, X., & Lin, H. (2019). Palygorskite-based material will paly an important role in modern ecological agriculture. Gansu Agriculture, 8, 9598.Google Scholar
Chisholm, J. E. (1990). An X-ray powder-diffraction study of palygorskite. The Canadian Mineralogist, 28, 329339.Google Scholar
Chisholm, J. E. (1992). Powder-diffraction patterns and structural models for palygorskite. The Canadian Mineralogist, 30, 6173.Google Scholar
Chryssikos, G. D., Gionis, V., Kacandes, G. H., Stathopoulou, E. T., Suárez, M., García-Romero, E., et al. (2009). Octahedral cation distribution in palygorskite. American Mineralogist, 94, 200203.CrossRefGoogle Scholar
Couch, E. L. (1971). Calculation of paleosalinities from boron and clay mineral data. AAPG Bulletin, 55, 18291837.Google Scholar
Couture, R. A. (1977). Composition and origin of palygorskite-rich and mont-morillonite-rich zeolite-containing sediments from the Pacific Ocean. Chemical Geology, 19, 113130.CrossRefGoogle Scholar
Draidia, S., El Ouahabi, M., Daoudi, L., Havenith, H.-B., & Fagel, N. (2016). Occurrences and genesis of palygorskite/sepiolite and associated minerals in the Barzaman Formation, United Arab Emirates. Clay Minerals, 51, 763779.CrossRefGoogle Scholar
EJ/T 754-1993 Determination of trace selenium content in uranium contained rocks using atomic fluorescence spectrometry.Google Scholar
Elidrissi, S., Daoudi, L., & Fagel, N. (2018). Palygorskite occurrences and genesis in calcisol and groundwater carbonates of the Tensift Al Haouz area, Central Morocco. Geoderma, 316, 7888.CrossRefGoogle Scholar
Furbish, W. J., & Sando, T. W. (1976). Palygorskite—by direct precipitation from a hydrothermal solution. Clay Minerals, 11, 147152.CrossRefGoogle Scholar
Galán, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31, 443453.CrossRefGoogle Scholar
Galán, E., & Carretero, M. I. (1999). A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, 47, 399409.CrossRefGoogle Scholar
Galán, E., & Ferrero, A. (1982). Palygorskite-sepiolite clays of Lebrija, southern Spain. Clays and Clay Minerals, 30, 191199.CrossRefGoogle Scholar
Galán, E., & Pozo, M. (2011). Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. In Galán, E. & Singer, A. (Eds.), Developments in Clay Science (Vol. 3, pp. 125173). Amsterdam: Elsevier.Google Scholar
GB/T 14506.28-2010 Methods for chemical analysis of silicate rock-Part 28: Determination of 16 major and minor elements content.Google Scholar
GB/T 14506.30-2010 Methods for chemical analysis of silicate rock – Part 30: Determination of 44 elements.Google Scholar
GB/T 22105.2-2008 Analysis of total mercury, arsenic and lead contents in soils – atomic fluorescence spectrometry – Part 2: Analysis of total arsenic contents in soils.Google Scholar
Gromet, L. P., Haskin, L. A., Korotev, R. L., & Dymek, R. F. (1984). The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48(12), 24692482.CrossRefGoogle Scholar
Hameed, A., Raja, P., Ali, M., Upreti, N., Kumar, N., Tripathi, J. K., et al. (2018). Micromorphology, clay mineralogy, and geochemistry of calcic-soils from western Thar Desert: Implications for origin of palygorskite and southwestern monsoonal fluctuations over the last 30ka. CATENA, 163, 378398.CrossRefGoogle Scholar
HDB/T 3022-2018 Determination of boron content in geological samples using inductively coupled plasma source mass spectrometer.Google Scholar
Hojati, S., & Khademi, H. (2011). Genesis and distribution of palygorskite in Iranian soils and sediments. In Gàlan, E. & Singer, A. (Eds.), Developments in Clay Science (Vol. 3, pp. 201218). Amsterdam: Elsevier.Google Scholar
Ingles, M., & Anadon, P. (1991). Relationship of clay minerals to depositional environment in the non-marine Eocene Pontils Group, SE Ebro Basin (Spain). Journal of Sedimentary Research, 61, 926939.Google Scholar
Inoue, K., Saito, M., & Naruse, T. (1998). Physicochemical, mineralogical, and geochemical characteristics of lacustrine sediments of the Konya Basin, Turkey, and their significance in relation to climatic change. Geomorphology, 23, 229243.CrossRefGoogle Scholar
Jamoussi, F., Ben Aboud, A., & López-Galindo, A. (2003). Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits. Clay Minerals, 38, 187199.CrossRefGoogle Scholar
Kadir, S., & Eren, M. (2008). The occurrence and genesis of clay minerals associated with Quaternary caliches in the Mersin area southern Turkey. Clays and Clay Minerals, 56, 244258.CrossRefGoogle Scholar
Kadir, S., Eren, M., Irkec, T., Erkoyun, H., Kulah, T., Onalgil, N., et al. (2017). An approach to genesis of sepiolite and palygorskite in lacustrine sediments of the Lower Pliocene Sakarya and Porsuk Formations in the Sivrihisar and Yunusemre-Biçer regions (Eskişehir), Turkey. Clays and Clay Minerals, 65, 310328.CrossRefGoogle Scholar
Kadir, S., Eren, M., Kuelah, T., Oenalgil, N., Cesur, M., & Guerel, A. (2014). Genesis of Late Miocene-Pliocene lacustrine palygorskite and calcretes from Kιrşehir, central Anatolia, Turkey. Clay Minerals, 49, 473494.CrossRefGoogle Scholar
Kadir, S., Eren, M., Külah, T., Erkoyun, H., Huggett, J., & Önalgil, N. (2018). Genesis of palygorskite and calcretes in Pliocene Eskişehir Basin, west central Anatolia, Turkey. CATENA, 168, 6278.CrossRefGoogle Scholar
Kaplan, M. Y., Muhsin, E., Kadir, S., Kapur, S., & Huggett, J. (2014). A microscopic approach to the pedogenic formation of palygorskite associated with Quaternary calcretes of the Adana area, southern Turkey. Turkish Journal of Earth Sciences, 23, 559574.CrossRefGoogle Scholar
Lee, S. Y., Dixon, J. B., & Aba-Husayn, M. M. (1983). Mineralogy of Saudi Arabian soils: eastern region. Soil Science Society of America Journal, 47, 321326.CrossRefGoogle Scholar
Lopez-Galindo, A., Ben Aboud, A., Fenoll Hach-Ali, P., & Casas Ruiz, J. (1996). Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor. Clay Minerals, 31, 3344.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. Jr. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press, UK.Google Scholar
Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Nathan, Y., Bentor, Y. K., & Wurtzburger, U. (1970). Vein palygorskites in Israel and Sinai; their origin and symmetry. Israel Journal of Chemistry, 8, 469476.CrossRefGoogle Scholar
Nyakairu, G. W., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 1328.CrossRefGoogle Scholar
Paquet, H. (1983). Stability, instability and significance of attapulgite in the calcretes of mediterranean and tropical areas with marked dry season. Sciences géologiques: Mémoire, 72, 131140.Google Scholar
Rodas, M., Luque, F. J., Mas, R., & Garzon, M. G. (1994). Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo Basins, central Spain. Clay Minerals, 29, 273285.CrossRefGoogle Scholar
Ronov, A. B., Balashov, Y. A., Girin, Y. P., Bratishko, R. K., & Kazakov, G. A. (1974). Regularities of rare-earth element distribution in the sedimentary shell and in the crust of the earth. Sedimentology, 21, 171193.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., Fernandes, F. M., Wicklein, B., Alcantara, A. C. S., & Aranda, P. (2013). Fibrous clays based bionanocomposites. Progress in Polymer Science, 38, 13921414.CrossRefGoogle Scholar
Ryan, B. H., Kaczmarek, S. E., & Rivers, J. M. (2019). Dolomite dissolution: An alternative diagenetic pathway for the formation of palygorskite clay. Sedimentology, 66, 18031824.CrossRefGoogle Scholar
Shadfan, H., & Mashhady, A. S. (1985). Distribution of palygorskite in sediments and soils of eastern Saudi Arabia. Soil Science Society of America Journal, 49, 243250.CrossRefGoogle Scholar
Singer, A. (1979). Palygorskite in sediments: Detrital, diagenetic or neoformed — A critical review. Geologische Rundschau, 68, 9961008.CrossRefGoogle Scholar
Stephen, I. (1954). An occurrence of palygorskite in the Shetland Isles. Mineralogical Magazine, 30(226), 471480.CrossRefGoogle Scholar
Suárez, M., García-Rivas, J., Sánchez-Migallón, J. M., & García-Romero, E. (2018). Spanish palygorskites: geological setting, mineralogical, textural and crystal-chemical characterization. European Journal of Mineralogy, 30, 733746.CrossRefGoogle Scholar
Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication.Google Scholar
Tazaki, K., Fyfe, W. S., Tsuji, M., & Katayama, K. (1987). TEM observation of the smectite-to-palygorskite transition in deep Pacific sediments. Applied Clay Science, 2, 233240.CrossRefGoogle Scholar
Thiry, M., & Pletsch, T. (2011). Palygorskite clays in marine sediments: records of extreme climate. In Gàlan, E. & Singer, A. (Eds.), Developments in Clay Science (Vol. 3, pp. 101124). Amsterdam: Elsevier.Google Scholar
Tlili, A., Felhi, M., & Montacer, M. (2010). Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia. Clays and Clay Minerals, 58, 573584.CrossRefGoogle Scholar
Torres-Ruíz, J., López-Galindo, A., González-López, J. M., & Delgado, A. (1994). Geochemistry of Spanish sepiolitepalygorskite deposits: Genetic considerations based on trace elements and isotopes. Chemical Geology, 112, 221245.CrossRefGoogle Scholar
Verrecchia, E. P., & Le Coustumer, M.-N. (1996). Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel. Clay Minerals, 31, 183202.CrossRefGoogle Scholar
Wang, C., Lin, S., Wei, Y., Zhou, Y., Chang, H., & Liu, J. (2017). Major factors influencing boron adsorption in sediments—a case study of modern sediments in Qinghai Lake. Environmental Earth Sciences, 76, 181192.CrossRefGoogle Scholar
Wang, W., & Wang, A. (2016). Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Applied Clay Science, 119, 1830.CrossRefGoogle Scholar
Wang, X., Cui, Q., & Zhang, G. (2005). Attapulgite clay deposit and gypsum deposit of Yangtaiwatan in Linze district. Acta Geologica Gansu, 14, 9095.Google Scholar
Xie, Q., Chen, T., Zhou, H., Xu, X., Xu, H., Ji, J., et al. (2013). Mechanism of palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China. Geoderma, 192, 3949.CrossRefGoogle Scholar
Yaalon, D. H., & Wieder, M. (1976). Pedogenic palygorskite in some arid brown (calciorthid) soils of Israel. Clay Minerals, 11, 7380.CrossRefGoogle Scholar
Ye, C., Yang, Y., Fang, X., Hong, H., Zhang, W., Yang, R., et al. (2018). Mineralogical and geochemical discrimination of the occurrence and genesis of palygorskite in Eocene sediments on the northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 19, 567581.CrossRefGoogle Scholar
Zhou, H., & Murray, H. H. (2011). Overview of Chinese palygorskite clay resources—their geology, mineralogy, depositional environment, applications and processing. In Galán, E. & Singer, A. (Eds.), Developments in Clay Science (Vol. 3, pp. 239263). Amsterdam: Elsevier.Google Scholar