Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:20:11.461Z Has data issue: false hasContentIssue false

Absorption Pigment Cores for Pearlescent Pigments

Published online by Cambridge University Press:  01 January 2024

Marián Matejdes*
Affiliation:
Lehrstuhl für Anorganische Chemie I, Universität Bayreuth, D-95440, Bayreuth, Germany
Josef Hausner
Affiliation:
Lehrstuhl für Anorganische Chemie I, Universität Bayreuth, D-95440, Bayreuth, Germany
Michael Grüner
Affiliation:
ECKART GmbH, D-91235, Hartenstein, Germany
Günter Kaupp
Affiliation:
ECKART GmbH, D-91235, Hartenstein, Germany
Josef Breu
Affiliation:
Lehrstuhl für Anorganische Chemie I, Universität Bayreuth, D-95440, Bayreuth, Germany
*
*E-mail address of corresponding author: Marian.Matejdes@unibayreuth.de

Abstract

A lustrous appearance and interference-based colors make pearlescent pigments attractive for use in applications such as automotive paints, plastics, consumer electronics, and cosmetics. A combination of interference and absorption in the visible light spectrum improves significantly the hiding power as well as the color strength of pearlescent pigments while potentially extending their color range. The aim of the present study was to introduce synthetic fluorohectorites, having an appreciable diameter (~20 μm) and aspect ratio (~1000), as promising colored cores for pearlescent pigments. Fluorohectorites can adopt a variety of colors by ion-exchange reaction with cationic organic dyes of high absorption coefficient. Unlike related dye-exchanged natural montmorillonite clays, which undergo acid activation accompanied by release of dye at low pH, as is required for subsequent coating with TiO2 in an environment with low pH and elevated temperature, no leaching was observed with dye-exchanged synthetic fluorohectorites ([Na0.5]int.[Mg2.5Li0.5]oct.[Si4]tet.O10F2). Due to its significantly greater layer charge, more organic dye molecules were adsorbed per volume of the fluorohectorite than for montmorillonite. Consequently, the free volume available in the interlayer space for H3O+ diffusion was less for synthetic fluorohectorite than for montmorillonite. Acid attack via interlayer space was, therefore, retarded significantly for fluorohectorite. Acid attack from the external edges of synthetic fluorohectorites was in the range of conventionally applied mica pigment core (fluorophlogopite, ([K]int.[Mg3]oct.[AlSi3]tet.O10(F,OH)2) because of the comparable large diameter of the platelets. Montmorillonite, however, occurs with particle diameters typically <200 nm and the much increased relative contribution of edges to the total surface area also makes them more prone to acid attack and concomitant leaching. Aside from leaching stability, the confinement of organic dyes in the interlayer space restricts rotational and vibrational motions, which in turn stabilizes the dyes typically by ~100°C against thermal decomposition as compared to chloride salts of the dyes.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, L., Bergaya, F., & Lagaly, G. (2005). Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441453.CrossRefGoogle Scholar
Baranyaiová, T. & Bujdák, J. (2018). Effects of dye surface concentration on the molecular aggregation of xanthene dye in colloidal dispersions of montmorillonite. Clays and Clay Minerals, 66, 114126.CrossRefGoogle Scholar
Bishop, J.L. & Murad, E. (2004). Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite. Journal of Raman Spectroscopy, 35, 480486.CrossRefGoogle Scholar
Boháč, P. & Bujdák, J. (2018). Tuning the photophysical properties of cyanine dyes with clay minerals. Clays and Clay Minerals, 66, 127137.CrossRefGoogle Scholar
Bujdák, J. (2006). Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Applied Clay Science, 34, 5873.CrossRefGoogle Scholar
Choudhary, S. & Sengwa, R.J. (2014). Intercalated clay structures and amorphous behavior of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. Journal of Applied Polymer Science, 131.CrossRefGoogle Scholar
Christidis, G.E., Scott, P.W., & Dunham, A.C. (1997). Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Applied Clay Science, 12, 329347.CrossRefGoogle Scholar
Collins, D.R., Fitch, A.N., & Catlow, C.R.A. (1992). Dehydration of vermiculites and montmorillonites: A time-resolved powder neutron diffraction study. Journal of Materials Chemistry, 2, 865873.CrossRefGoogle Scholar
Gates, W.P., Anderson, J.S., Raven, M.D., & Churchman, G.J. (2002). Mineralogy of a bentonite from Miles, Queensland, Australia and characterisation of its acid activation products. Applied Clay Science, 20, 189197.CrossRefGoogle Scholar
Hall, P.L. & Astill, D.M. (1989). Adsorption of water by homoionic exchange forms of Wyoming montmorillonite (SWy-1). Clays and Clay Minerals, 37, 355363.CrossRefGoogle Scholar
Horiishi, N., Kathrein, H., Krieg, S., Pfaff, G., Pitzer, U., Ronda, C., Schwab, E., Besold, R., & Buxbaum, G. (2005). Specialty pigments. Pp. 195295. In Buxbaum, G., and Pfaff, G., Eds. Industrial Inorganic Pigments. Wiley-VCH Verlag GmbH, Weinheim, Germany.CrossRefGoogle Scholar
Kalo, H., Möller, M.W., Ziadeh, M., Dolejš, D., & Breu, J. (2010). Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size. Applied Clay Science, 48, 3945.CrossRefGoogle Scholar
Komadel, P. & Madejová, J. (2006). Acid activation of clay minerals. In Bergaya, F., Theng, B.K.G., and Lagaly, G., Eds. Handbook of Clay Science, Elsevier Ltd.Google Scholar
Koyama, T., Tanoue, S., Iemoto, Y., Maekawa, T., & Unryu, T. (2009). Melt compounding of various polymers with organoclay by shear flow. Polymer Composites, 30, 10651073.CrossRefGoogle Scholar
Kunz, D.A., Leitl, M.J., Schade, L., Schmid, J., Bojer, B., Schwarz, U.T., Ozin, G.A., Yersin, H., & Breu, J. (2015). Quasi-epitaxial growth of [ru(bpy)3]2+ by confinement in clay nanoplatelets yields polarized emission. Small, 11, 792796.CrossRefGoogle ScholarPubMed
Lackovičová, M., Baranyaiová, T., & Bujdák, J. (2019). The chemical stabilization of methylene blue in colloidal dispersions of smectites. Applied Clay Science, 181, 105222.CrossRefGoogle Scholar
Lagaly, G. (1982). Layer charge heterogeneity in vermiculites. Clays and Clay Minerals, 30, 215222.CrossRefGoogle Scholar
Laguna, H., Loera, S., Ibarra, I.A., Lima, E., Vera, M.A., & Lara, V. (2007). Azoic dyes hosted on hydrotalcite-like compounds: Non-toxic hybrid pigments. Microporous and Mesoporous Materials, 98, 234241.CrossRefGoogle Scholar
Maile, F.J., Pfaff, G., & Reynders, P. (2005). Effect pigments—past, present and future. Progress in Organic Coatings, 54, 150163.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1958). Iron oxide removal from soils and clays by a dithionate-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.CrossRefGoogle Scholar
Pfaff, G. (2002). Special effect pigments. In Smith, H., Ed. High Performance Pigments. Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
Pfaff, G. & Weitzel, J. (2004). Pearlescent pigments/flakes. Pp. 226241. In Charvat, R.A., Ed. Coloring of Plastics: Fundamentals, John Wiley & Sons, Inc.Google Scholar
Sherman, R., Hirt, D., & Vane, R. (1994). Surface cleaning with the carbon dioxide snow jet. Journal of Vacuum Science, & Technology A, 12, 18761881.CrossRefGoogle Scholar
Smitha, V.S., Manjumol, K.A., Ghosh, S., Brahmakumar, M., Pavithran, C., Perumal, P., & Warrier, K.G. (2011). Rhodamine 6g intercalated montmorillonite nanopigments–polyethylene composites: Facile synthesis and ultravioletstability study. Journal of the American Ceramic Society, 94, 17311736.CrossRefGoogle Scholar
Stöter, M., Kunz, D.A., Schmidt, M., Hirsemann, D., Kalo, H., Putz, B., Senker, J., & Breu, J. (2013). Nanoplatelets of sodium hectorite showing aspect ratios of ≍20 000 and superior purity. Langmuir, 29, 12801285.CrossRefGoogle ScholarPubMed
Stöter, M., Biersack, B., Reimer, N., Herling, M., Stock, N., Schobert, R., & Breu, J. (2014). Ordered heterostructures of two strictly alternating types of nanoreactors. Chemistry of Materials, 26, 54125419.CrossRefGoogle Scholar
Swain, M. (2012). Chemicalize.Org. Journal of Chemical Information and Modeling, 52, 613615.CrossRefGoogle Scholar
Tang, P., Xu, X., Lin, Y., & Li, D. (2008). Enhancement of the thermoand photostability of an anionic dye by intercalation in a zinc –aluminum layered double hydroxide host. Industrial & Engineering Chemistry Research, 47, 24782483.CrossRefGoogle Scholar
Torrent, J. & Barrón, V. (2008). Diffuse reflectance spectroscopy. Pp. 367385. In Ulery, A.L. & Drees, L.R., Eds. Methods of Soil Analysis Part 5-Mineralogical Methods, Soil Science Society of America, Inc. Madison, Wisconsin, USA.Google Scholar
Tsurko, E.S., Feicht, P., Nehm, F., Ament, K., Rosenfeldt, S., Pietsch, I., Roschmann, K., Kalo, H., & Breu, J. (2017). Large scale self-assembly of smectic nanocomposite films by doctor blading versus spray coating: Impact of crystal quality on barrier properties. Macromolecules, 50, 43444350.CrossRefGoogle Scholar