Skip to main content

Advertisement

Log in

Electrospun structural nanohybrids combining three composites for fast helicide delivery

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The effective and convenient delivery of poorly water-soluble drugs often needs a combined effort of several disciplines. In this study, a brand-new structural hybrid, tri-section Janus nanofiber (TJN), was successfully prepared using a tri-fluid electrospinning and was demonstrated to be useful for delivering helicide, a poorly water-soluble Chinese herbal medicine. The TJNs were composed of three sorts of polymer-based nanocomposites: helicide-polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS)-PVP, and sucralose-PVP. The electrospinning processes, characterized by a new homemade spinneret, were investigated to disclose the TJNs’ micro-formation mechanism. SEM and TEM results verified that the TJNs presented in the linear morphologies and the three sections within the nanofibers could be discerned clearly. XRD and ATR-FTIR showed that the functional ingredients, helicide, SDS, and sucralose, presented in their own sections in an amorphous state due to the favorable secondary interactions with the PVP matrices. Three methods were carried out to study the functional performances of TJNs. The results showed that not only the helicide was able to dissolve all at once, but also the loaded SDS and sucralose were able to be released before helicide for a sequential release effect and thus for a potential convenient and effective drug delivery to the patients through tongue mucosas. The TJN can be a useful platform for supporting the developments of advanced functional nanomaterials and multiple-functional biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW (2021) Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliver Rev 175(8):113823. https://doi.org/10.1016/j.addr.2021.05.033

    Article  CAS  Google Scholar 

  2. Chi ZM, Zhao SQ, Feng YX, Yang L (2020) On-line dissolution analysis of multiple drugs encapsulated in electrospun nanofibers. Int J Pharm 588(10):119800. https://doi.org/10.1016/j.ijpharm.2020.119800

    Article  CAS  Google Scholar 

  3. Sa’adon S, Ansari MNM, Razak SIA, Anand JS, Nayan NHM, Ismail AE, Khan MUA, Haider A (2021) Preparation and physicochemical characterization of a diclofenac sodium-dual layer polyvinyl alcohol patch. Polymers 13(15):2459. https://doi.org/10.3390/polym13152459

    Article  CAS  Google Scholar 

  4. Yu DG (2021) Preface-bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr Drug Deliv 18:2–3

    Article  CAS  Google Scholar 

  5. Zhang Y, Li S, Xu Y, Shi X, Zhang M, Huang Y, Liang Y, Chen Y, Ji W, Kim JR, Song W, Yu DG, Kim I (2022) Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial Activities. Nano Res. https://doi.org/10.1007/s12274-022-4160-6

    Article  Google Scholar 

  6. Mouro C, Fangueiro R, Gouveia IC (2020) Preparation and characterization of electrospun double-layered nanocomposites membranes as a carrier for centella asiatica (L.). Polymers 12(11):2653. https://doi.org/10.3390/polym12112653

    Article  CAS  Google Scholar 

  7. Saraogi GK, Tholiya S, Mishra Y, Mishra V, Albuttim A, Nayak P, Tambuwala MM (2022) Formulation development and evaluation of pravastatin-loaded nanogel for hyperlipidemia management. Gels 8(2):81. https://doi.org/10.3390/gels8020081

    Article  CAS  Google Scholar 

  8. Bagliotti MA, Miguel SR, Chaves DSMP, Perosa FR, Gomes DOA, Marlus C (2021) Cellulose nanofibers improve the performance of retrograded starch/pectin microparticles for colon-specific delivery of 5-ASA. Pharmaceutics 13(9):1515. https://doi.org/10.3390/pharmaceutics13091515

    Article  CAS  Google Scholar 

  9. Hou Z, Itagaki N, Kobayashi H, Tanaka K, Takarada W, Kikutani T, Takasaki M (2021) Bamboo charcoal/poly(l-lactide) fiber webs prepared using laser-heated melt electrospinning. Polymers 13(16):2776. https://doi.org/10.3390/polym13162776

    Article  CAS  Google Scholar 

  10. Cervantes MYG, Kim J, Chitara B, Wymer N, Yan F (2021) N-halamine-decorated electrospun polyacrylonitrile nanofibrous membranes: characterization and antimicrobial properties. React Funct Polym 168:105058. https://doi.org/10.1016/j.reactfunctpolym.2021.105058

    Article  CAS  Google Scholar 

  11. Bhusnure OG, Gholve SB, Giram PS, Gaikwad AV, Udumansha U, Mani G, Tae JH (2021) Novel 5-flurouracil-embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: formulation, evaluation and in vitro anti-cancer activit. J Drug Deliv Sci Technol 64(8):102654. https://doi.org/10.1016/j.jddst.2021.102654

    Article  CAS  Google Scholar 

  12. Li X, Chen K, Ji X, Yuan X, Lei Z, Ullah MW, Xiao J, Yang G (2021) Microencapsulation of poorly water-soluble finasteride in polyvinyl alcohol/chitosan microspheres as a long-term sustained release system for potential embolization applications. Eng Sci 13:106–120. https://doi.org/10.30919/es8d1159

    Article  CAS  Google Scholar 

  13. Mehdi M, Hussain S, Gao BB, Shah KA, Mahar FK, Yousif M, Hussain S, Ahmed F (2021) Fabrication and characterization of rizatriptan loaded pullulan nanofibers as oral fast-dissolving drug system. Mater Res Express 8(5):055404. https://doi.org/10.1088/2053-1591/abff0b

    Article  CAS  Google Scholar 

  14. Ding CB, Zhou CX, Fan YY, Liu Q, Zhang HF, Wu ZW (2022) Electrospun polylactic acid/sulfadiazine sodium/proteinase nanofibers and their applications in treating frostbite. J Appl Polym Sci 139(9):e51716. https://doi.org/10.1002/app.51716

    Article  CAS  Google Scholar 

  15. Yu DG, Lv H (2022) Preface-striding into nano drug delivery. Curr Drug Deliv 19(1):2–4

    Article  Google Scholar 

  16. Salim SA, Kamoun EA, Evans S, El-Moslamy SH, El-Fakharany EM, Elmazar MM, Abdel-Aziz AF, Abou-Saleh RH, Salaheldin TA (2021) Mercaptopurine-loaded sandwiched tri-layered composed of electrospun polycaprolactone/poly(methyl methacrylate) nanofibrous scaffolds as anticancer carrier with antimicrobial and antibiotic features: sandwich configuration nanofibers, release study and in vitro bioevaluation tests. Int J Nanomedicine 16:6937–6955. https://doi.org/10.2147/IJN.S332920

    Article  CAS  Google Scholar 

  17. Balusamy B, Celebioglu A, Senthamizhan A, Uyar T (2020) Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - a systematic review. J Control Release 326:482–509. https://doi.org/10.1016/j.jconrel.2020.07.038

    Article  CAS  Google Scholar 

  18. Manakhov AM, Sitnikova NA, Tsygankova AR, Alekseev AY, Adamenko LS, Permyakova E, Baidyshev VS, Popov ZI, Blahová L, Eliáš M, Zajíčková L, Solovieva AO (2021) Electrospun biodegradable nanofibers coated homogenously by Cu magnetron sputtering exhibit fast ion release Computational and experimental study. Membranes 11(12):965. https://doi.org/10.3390/membranes11120965

    Article  CAS  Google Scholar 

  19. Vineis C, Maya IC, Mowafi S, Varesano A, Ramírez DOS, Taleb MA, Tonetti C, Guarino V, El-Sayed H (2021) Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Int J Biol Macromol 190(11):375–381. https://doi.org/10.1016/j.ijbiomac.2021.09.007

    Article  CAS  Google Scholar 

  20. Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP (2022) Tunable spun fiber constructs in biomedicine: influence of processing parameters in the fibers’ architecture. Pharmaceutics 14(1):164. https://doi.org/10.3390/pharmaceutics14010164

    Article  CAS  Google Scholar 

  21. Mary AS, Raghavan VS, Kagula S, Krishnakumar V, Kannan M, Gorthi SS, Rajaram K (2021) Enhanced in vitro wound healing using PVA/B-PEI nanofiber mats: a promising wound therapeutic agent against ESKAPE and opportunistic pathogens. ACS Appl Bio Mater 4(12):8466–8476. https://doi.org/10.1021/acsabm.1c00985

    Article  CAS  Google Scholar 

  22. Mirzaie Z, Reisi-Vanani A, Barati M, Atyabi SM (2021) The drug release kinetics and anticancer activity of the GO/PVA-curcumin nanostructures: the effects of the preparation method and the GO amount. J Pharm Sci 110(11):3715–3725. https://doi.org/10.1016/j.xphs.2021.07.016

    Article  CAS  Google Scholar 

  23. Haidar MK, Timur SS, Demirbolat GM, Nemutlu E, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H (2021) Electrospun nanofibers for dual and local delivery of neuroprotective drugs. Fiber Polym 22(2):334–344. https://doi.org/10.1007/s12221-021-0228-2

    Article  CAS  Google Scholar 

  24. Peres RM, Sousa JML, Oliveira MOD, Rossi MV, Oliveira RRD, Lima NBD, Bernussi A, Warzywoda J, Sarmento B, Munahoz AH (2021) Pseudoboehmite as a drug delivery system for acyclovir. Sci Rep 11(1):15448. https://doi.org/10.1038/s41598-021-94325-y

    Article  CAS  Google Scholar 

  25. Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S (2021) Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym 163:104895. https://doi.org/10.1016/j.reactfunctpolym.2021.104895

    Article  CAS  Google Scholar 

  26. Tubtimsri S, Weerapol Y (2021) Improvement in solubility and absorption of nifedipine using solid solution: correlations between surface free energy and drug dissolution. Polymers 13(17):2963. https://doi.org/10.3390/polym13172963

    Article  CAS  Google Scholar 

  27. Kiss K, Hegedüs K, Vass P, Vári-Mező D, Farkas A, Nagy ZK, Molnár L, Tóvári J, Mező G, Marosi G (2021) Development of fast-dissolving dosage forms of curcuminoids by electrospinning for potential tumor therapy application. Int J Pharm 611(2):121327. https://doi.org/10.1016/j.ijpharm.2021.121327

    Article  CAS  Google Scholar 

  28. Łyszczarz E, Brniak W, Szafraniec-Szczęsny J, Majka TM, Majda D, Zych M, Pielichowski K, Jachowicz R (2021) The impact of the preparation method on the properties of orodispersible films with aripiprazole: electrospinning vs. casting and 3D printing methods. Pharmaceutics 13(8):1122. https://doi.org/10.3390/pharmaceutics13081122

    Article  CAS  Google Scholar 

  29. Xu G, Chen X, Zhu Z, Wu P, Wang H, Chen X, Gao W, Liu Z (2020) Pulse gas-assisted multi-needle electrospinning of nanofibers. Adv Compos Hybrid Mater 3(1):98–113. https://doi.org/10.1007/s42114-019-00129-0

    Article  CAS  Google Scholar 

  30. Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 4:1–12. https://doi.org/10.1007/s42114-021-00230-3

    Article  CAS  Google Scholar 

  31. Liu Y, Chen X, Liu Y, Gao Y, Liu P (2022) Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers 2022(14):469. https://doi.org/10.3390/polym14030469

    Article  CAS  Google Scholar 

  32. Kyselica R, Enikov ET, Anton R (2021) Method for production of aligned nanofibers and fiber elasticity measurement. J Mech Behav Biomed 113(1):104151. https://doi.org/10.1016/j.jmbbm.2020.104151

    Article  CAS  Google Scholar 

  33. Zare M, Dziemidowicz K, Williams GR, Ramakrishna S (2021) Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes. Nanomaterials 11(8):1968. https://doi.org/10.3390/nano11081968

    Article  CAS  Google Scholar 

  34. Kalous T, Holec P, Erben J, Bilek M, Batka O, Pokorny P, Chaloupek J, Chvojka J (2021) The optimization of alternating current electrospun PA 6 solutions using a visual analysis system. Polymers 13(13):2098. https://doi.org/10.3390/polym13132098

    Article  CAS  Google Scholar 

  35. ljohani MA, Alkabli J, Abualnaja MM, Alrefaei AF, Almehmadi SJ, Mahmoud MHH, El-Metwaly NM (2021) Electrospun AgNPs-polylactate nanofibers and their antimicrobial applications. React Funct Polym 167:104999. https://doi.org/10.1016/j.reactfunctpolym.2021.104999

  36. Görgün N, Özer Ç, Polat K (2019) A new catalyst material from electrospun PVDF-HFP nanofibers by using magnetron-sputter coating for the treatment of dye-polluted waters. Adv Compos Hybrid Mater 2(3):423–430. https://doi.org/10.1007/s42114-019-00105-8

    Article  CAS  Google Scholar 

  37. Panthi G, Ranjit R, Khadka S, Gyawali KR, Kim H-Y, Park M (2020) Characterization and antibacterial activity of rice grain-shaped ZnS nanoparticles immobilized inside the polymer electrospun nanofibers. Adv Compos Hybrid Mater 3(1):8–15. https://doi.org/10.1007/s42114-020-00141-9

    Article  CAS  Google Scholar 

  38. Deng L, Zhang H (2020) Recent advances in probiotics encapsulation by electrospinning. ES Food Agrofor 2:3–12. https://doi.org/10.30919/esfaf1120

    Article  Google Scholar 

  39. Gao C, Deng W, Pan F, Feng X, Li Y (2020) Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Eng Sci 9:35–43. https://doi.org/10.30919/es8d905

    Article  CAS  Google Scholar 

  40. Wu F, He P, Chang X, Jiao W, Liu L, Si Y, Yu J, Ding B (2021) Visible-light-driven and self-hydrogen-donated nanofibers enable rapid-deployable antimicrobial bioprotection. Small 17(12):2100139. https://doi.org/10.1002/smll.202100139

    Article  CAS  Google Scholar 

  41. Zhang L, Li LF, Wang LC, Nie J, Ma GP (2020) Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Appl Surf Sci 515(6):145962. https://doi.org/10.1016/j.apsusc.2020.145962

    Article  CAS  Google Scholar 

  42. Hsiung E, Celebioglu A, Chowdhury R, Kilic ME, Durgun E, Altier C, Uyar T (2022) Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for fast-disintegrating oral drug delivery. J Colloid Interf Sci 610:321–333. https://doi.org/10.1016/j.jcis.2021.12.013

    Article  CAS  Google Scholar 

  43. McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311(5759):353–355. https://doi.org/10.1126/science.1119790

    Article  CAS  Google Scholar 

  44. Song Y, Huang H, He D, Yang M, Wang H, Zhang H, Li J, Li Y, Wang C (2021) Gallic acid/2-hydroxypropyl-β-cyclodextrin inclusion complexes electrospun nanofibrous webs: fast dissolution, improved aqueous solubility and antioxidant property of gallic acid. Chem Res Chinese Universities 37(3):450–455. https://doi.org/10.1007/s40242-021-0014-0

    Article  CAS  Google Scholar 

  45. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60. https://doi.org/10.1016/j.nantod.2016.02.004

    Article  CAS  Google Scholar 

  46. Isaacoff BP, Brown KA (2017) Progress in top-down control of bottom-up assembly. Nano Lett 17(11):6508–6510. https://doi.org/10.1021/acs.nanolett.7b04479

    Article  CAS  Google Scholar 

  47. Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu DG (2021) Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes 11(11):802. https://doi.org/10.3390/membranes11110802

    Article  CAS  Google Scholar 

  48. Lv H, Guo S, Zhang G, He W, Wu Y, Yu DG (2021) Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers 13:4286. https://doi.org/10.3390/polym13244286

    Article  CAS  Google Scholar 

  49. Zhou K, Wang M, Zhou Y, Sun M, Xie Y, Yu DG (2022) Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00389-9

    Article  Google Scholar 

  50. He H, Wu M, Zhu J, Yang Y, Ge R, Yu DG (2021) Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater. https://doi.org/10.1007/s42765-021-00112-9

    Article  Google Scholar 

  51. Zhang X, Guo S, Qin Y, Li C (2021) Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem Res Chinese Universities 37(3):379–393. https://doi.org/10.1007/s40242-021-1123-5

    Article  CAS  Google Scholar 

  52. Yang S, Liu Y, Jiang Z, Gu J, Zhang D (2018) Thermal and mechanical performance of electrospun chitosan/poly(vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1(4):722–730. https://doi.org/10.1007/s42114-018-0060-3

    Article  CAS  Google Scholar 

  53. Yang P, Zhao H, Yang Y, Zhao P, Zhao X, Yang L (2020) Fabrication of N, P-codoped Mo2C/carbon nanofibers via electrospinning as electrocatalyst for hydrogen evolution reaction. ES Mater Manuf 7:34–39. https://doi.org/10.30919/esmm5f618

    Article  CAS  Google Scholar 

  54. Xie W, Shi Y, Wang Y, Zheng Y, Liu H, Hu Q, Wei S, Gu H, Guo Z (2021) Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126585

    Article  Google Scholar 

  55. Wu C, Wei XH, Zhao K, Jiang JY, Jiao MZ, Cheng JH, Tang Z, Guo Z, Tang YF (2021) Novel dam-like effect based on piezoelectric energy conversion for drug sustained release of drug-loaded TiO2@BaTiO3 coaxial nanotube coating. Ceram Int 47(12):17550–17559. https://doi.org/10.1016/j.ceramint.2021.03.073

    Article  CAS  Google Scholar 

  56. Darbasizadeh B, Mortazavi SA, Kobarfard F, Jaafari MR, Hashemi A, Farhadnejad H, Feyzi-barnaji B (2021) Electrospun doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells. J Drug Deliv Sci Technol 64(8):102576. https://doi.org/10.1016/j.jddst.2021.102576

    Article  CAS  Google Scholar 

  57. Kazsoki A, Palcsó B, Alpár A, Snoeck R, Andrei G, Zelkó R (2022) Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. Int J Pharm 611:121354. https://doi.org/10.1016/j.ijpharm.2021.121354

    Article  CAS  Google Scholar 

  58. Kumar D, Kumar S, Kumar S, Rohatgi S, Kundu PP (2021) Synthesis of rifaximin loaded chitosan-alginate core-shell nanoparticles (Rif@CS/Alg-NPs) for antibacterial applications. Int J Biol Macromol 183(7):962–971. https://doi.org/10.1016/j.ijbiomac.2021.05.022

    Article  CAS  Google Scholar 

  59. Lv Y, Zhu L, Xu H, Yang L, Liu Z, Cheng D, Cao X, Yun J, Cao D (2019) Core/shell template-derived Co, N-doped carbon bifunctional electrocatalysts for rechargeable Zn-air battery. Eng Sci 7:26–37. https://doi.org/10.30919/es8d768

    Article  Google Scholar 

  60. Xu X, Zhang M, Lv H, Yang Y, Yu DG (2022) Electrospun polyacrylonitrile-based lace nanostructures and their Cu(II) adsorption. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2022.120643

    Article  Google Scholar 

  61. Duan GG, Jin MD, Wang F, Greiner A, Agarwal S, Jiang SH (2021) Core effect on mechanical properties of one dimensional electrospun core-sheath composite fibers. Compos Comm 25:100773. https://doi.org/10.1016/j.coco.2021.100773

    Article  Google Scholar 

  62. Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P (2021) Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Mol Pharm 18(11):4170–4178. https://doi.org/10.1021/acs.molpharmaceut.1c00559

    Article  CAS  Google Scholar 

  63. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932. https://doi.org/10.1002/adma.200305136

    Article  CAS  Google Scholar 

  64. Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304(5679):1917–1919. https://doi.org/10.1126/science.1099074

    Article  CAS  Google Scholar 

  65. Wei X, Chen L, Wang Y, Sun Y, Ma C, Yang X, Jiang S, Duan G (2022) An electrospinning anisotropic hydrogel with remotely-controlled photo-responsive deformation and long-range navigation for synergist actuation. Chem Eng J 433(3):134258. https://doi.org/10.1016/j.cej.2021.134258

    Article  CAS  Google Scholar 

  66. Wang M, Hou J, Yu D-G, Li S, Zhu J, Chen Z (2020) Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd 846:156471. https://doi.org/10.1016/j.jallcom.2020.156471

    Article  CAS  Google Scholar 

  67. Labbaf S, Ghanbar H, Stride E, Edirisinghe M (2014) Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol Rapid Commun 35(6):618–623. https://doi.org/10.1002/marc.201300777

    Article  CAS  Google Scholar 

  68. Zhang X, Chi C, Chen J, Zhang X, Gong M, Wang X, Xue J (2021) Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater Des 206:109732. https://doi.org/10.1016/j.matdes.2021.109732

    Article  CAS  Google Scholar 

  69. Zhao K, Lu Z-H, Zhao P, Kang S-X, Yang Y-Y, Yu D-G (2021) Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J 425:131455. https://doi.org/10.1016/j.cej.2021.131455

    Article  CAS  Google Scholar 

  70. Gupta P, Wilkes GL (2003) Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 44(20):6353–6359. https://doi.org/10.1016/S0032-3861(03)00616-5

    Article  CAS  Google Scholar 

  71. Liu YJ, Wang JL, Shao Y, Deng RH, Zhu JT, Yang ZZ (2022) Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Prog Mater Sci 124(2):100888. https://doi.org/10.1016/j.pmatsci.2021.100888

    Article  CAS  Google Scholar 

  72. Liu X, Xu H, Zhang M, Yu DG (2021) Electrospun medicated nanofibers for wound healing: review. Membranes 11(10):770. https://doi.org/10.3390/membranes11100770

    Article  CAS  Google Scholar 

  73. Aidana Y, Wang Y, Li J, Chang S, Wang K, Yu D-G (2022) Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water-soluble drugs. Curr Drug Deliv. https://doi.org/10.2174/1567201818666210215110359

    Article  Google Scholar 

  74. Jiang SH, Chen YM, Duan GG, Mei CT, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720. https://doi.org/10.1039/c8py00378e

    Article  CAS  Google Scholar 

  75. Xie YR, Ma QL, Qi HN, Liu XN, Chen XY, Jin Y, Li D, Yu WS, Dong XT (2021) A fluorescent triboelectric nanogenerator manufactured with a flexible Janus nanobelt array concurrently acting as a charge-generating layer and charge-trapping layer. Nanoscale 13(45):19144–19154. https://doi.org/10.1039/d1nr06533e

    Article  CAS  Google Scholar 

  76. Qi HN, Wang GY, Ma QL, Li D, Dong XT, Yu WS, Wang JX, Liu GX, Zhang XJ (2022) Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. J Mater Sci 10(2). https://doi.org/10.1007/s10854-021-07635-2

  77. Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu DG (2022) Polymer-based nanofiber-nanoparticle hybrids and their medical applications. Polymers 14:351. https://doi.org/10.3390/polym14020351

    Article  CAS  Google Scholar 

  78. Liu R, Hou L, Yue G, Li H, Zhang J, Liu J, Miao B, Wang N, Bai J, Cui Z, Liu T, Zhao Y (2022) Progress of fabrication and applications of electrospun hierarchically porous nanofbers. Adv Fiber Mater 4. https://doi.org/10.1007/s42765-022-00132-z

  79. Yu DG, Wang M, Ge R (2021) Strategies for sustained drug release from electrospun multi-layer nanostructures. WIREs Nanomed Nanobiotechnol 13:e1772. https://doi.org/10.1002/wnan.1772

    Article  CAS  Google Scholar 

  80. Wlodarczyk J, Stojko M, Musial-Kulik M, Karpeta-Jarzabek P, Pastusiak M, Janeczek H, Dobrzynski P, Sobota M, Kasperczyk J (2022) Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation properties. J Mech Behav Biomed 126(2):105050. https://doi.org/10.1016/j.jmbbm.2021.105050

    Article  CAS  Google Scholar 

  81. Lv H, Yu DG, Wang M, Ning T (2021) Nanofabrication of Janus fibers through side-by-side electrospinning - a mini review. Mater Highlight. https://doi.org/10.2991/mathi.k.210212.001

    Article  Google Scholar 

  82. Malihe G, Shahnoosh A, Amir R, Shiva R, Hajir BS (2022) Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloid Surface A 636:128163. https://doi.org/10.1016/j.colsurfa.2021.128163

    Article  CAS  Google Scholar 

  83. Abdullah MF, Andriyana A, Muhamad F, Ang BC (2021) Effect of core-to-shell flow rate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. Polymer 237(12):124378. https://doi.org/10.1016/j.polymer.2021.124378

    Article  CAS  Google Scholar 

  84. Kang S, Zhao K, Yu DG, Zheng X, Huang C (2022) Advances in biosensing and environmental monitoring based on electrospun nanofibers. Adv Fiber Mater 4(1). https://doi.org/10.1007/s42765-021-00129-0

  85. Yang XL, Wang JW, Guo HT, Liu L, Xu WH, Duan GG (2020) Structural design toward functional materials by electrospinning: a review. e-Polymers 20(1):682–712. https://doi.org/10.1515/epoly-2020-0068

  86. Kang S, Hou S, Chen X, Yu D-G, Wang L, Li X, Williams GR (2020) Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers 12(10):2421. https://doi.org/10.3390/polym12102421

    Article  CAS  Google Scholar 

  87. Li Y, Wang D, Xu GC, Qiao L, Li Y, Gong HY, Shi L, Li DW, Gao M, Liu GR, Zhang JJ, Wei WH, Zhang XS, Liang X (2021) ZIF-8/PI nanofibrous membranes with high-temperature resistance for highly efficient PM0.3 air filtration and oil-water separation. Front Chem 9:810861. https://doi.org/10.3389/fchem.2021.810861

  88. Na KH, Kim BS, Yoon HS, Song TH, Kim SW, Cho CH, Choi WY (2021) Fabrication and photocatalytic properties of electrospun Fe-doped TiO2 nanofibers using polyvinyl pyrrolidone precursors. Polymers 13(16):2634. https://doi.org/10.3390/polym13162634

    Article  CAS  Google Scholar 

  89. Hardt JC, Pellá MCG, Meira ACR, Rosenberger AG, Caetano J, Dragunski DC (2021) Potential wound dressings from electrospun medicated poly(butylene-adipate-co-terephthalate)/poly-(ε-caprolactone) microfibers. J Mol Liq 339(10):116694. https://doi.org/10.1016/j.molliq.2021.116694

    Article  CAS  Google Scholar 

  90. Bae Y, Kim Y, Lee ES (2021) Endosomal pH-responsive Fe-based hyaluronate nanoparticles for doxorubicin delivery. Molecules 26(12):3547. https://doi.org/10.3390/molecules26123547

    Article  CAS  Google Scholar 

  91. Sivan M, Madheswaran D, Valtera J, Kostakova EK, Lukas D (2021) Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater Design 213(2):110308. https://doi.org/10.1016/j.matdes.2021.110308

    Article  CAS  Google Scholar 

  92. Hajjari MM, Golmakani MT, Sharif N, Niakousari M (2021) In-vitro and in-silico characterization of zein fiber incorporating cuminaldehyde. Food Bioprod Process 128(7):166–176. https://doi.org/10.1016/j.fbp.2021.05.003

    Article  CAS  Google Scholar 

  93. Lee B, Song Y, Park C, Kim J, Kang J, Lee H, Yoon J, Cho S (2021) Focused patterning of electrospun nanofibers using a dielectric guide structure. Polymers 13(9):1505. https://doi.org/10.3390/polym13091505

    Article  CAS  Google Scholar 

  94. Li XY, Qi WW, Zhang YX, Jiang SY, Yang B, Xiong L, Tong JC (2019) Helicid ameliorates learning and cognitive ability and activities cAMP/PKA/CREB signaling in chronic unpredictable mild stress rats. Biolog Pharm Bull 42(7):1146–1154. https://doi.org/10.1248/bpb.b19-00012

    Article  CAS  Google Scholar 

  95. Tong JC, Zhou ZM, Qi WW, Jiang SY, Yang B, Zhong ZL, Jia YW, Li XY, Xiong L, Nie LW (2019) Antidepressant effect of helicid in chronic unpredictable mild stress model in rats. Int Immunopharmacol 67:13–21. https://doi.org/10.1016/j.intimp.2018.11.052

    Article  CAS  Google Scholar 

  96. Mbituyimana B, Mao L, Hu S, Ullah MW, Chen K, Fu L, Zhao W, Shi Z, Yang G (2021) Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment. J Bioresource Bioprod 6(2):129–141. https://doi.org/10.1016/j.jobab.2021.02.003

    Article  CAS  Google Scholar 

  97. Joseph B, Sagarika VK, Sabu C, Kalarikkal N, Thomas S (2020) Cellulose nanocomposites: Fabrication and biomedical applications. J Bioresources Bioproducts 5(4):223–237. https://doi.org/10.1016/j.jobab.2020.10.001

    Article  CAS  Google Scholar 

  98. Fatima A, Yasir S, Khan MS, Manan S, Ullah MW, Ul-Islam M (2021) Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J Bioresource Bioprod 6(1):26–32. https://doi.org/10.1016/j.jobab.2020.11.002

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Shanghai Natural Science Foundation (No.20ZR1439000) and the USST-NMU-Pengting Medical Corporation joint medical project (No. 20210937).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuhua Lu, Deng-Guang Yu or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hang Liu and Haibin Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, H., Lu, X. et al. Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Mater 5, 1017–1029 (2022). https://doi.org/10.1007/s42114-022-00478-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00478-3

Keywords

Navigation