Skip to main content
Log in

Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design of stable, efficient and processable bactericidal materials represents a significant challenge for combating multidrug-resistant bacteria in a variety of engineering fields. Herein, we report a facile strategy for the preparation of hollow polymeric nanosphere (HPN)-supported imidazolium-based ionic liquids (denoted as HPN-ILs) with superior antimicrobial activities. HPN-ILs were tailored by moderate Friedel-Crafts polymerization followed by the sequential covalent bonding of imidazole and bromoalkene. The resultant HPN-ILs have uniform hollow spherical morphology, an adequate surface area, and excellent physicochemical stability. Furthermore, they are highly active against both Gram-positive and Gram-negative bacteria and exhibit typical time/dosage-dependent antibacterial activities. The rational combination of porous HPNs and antibacterial ILs to generate an all-in-one entity may open new avenues for the design and fabrication of efficient bacteriostatic agents. Moreover, HPN-ILs have good biocompatibility and can also be loaded onto diverse matrices, and thus could extend their practical bactericidal application in the potential biomedical-active field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng, B.; Zhang, X. L.; Aarts, D. G. A. L.; Dullens, R. P. A. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat. Nanotechnol. 2018, 13, 478–482.

    Article  CAS  Google Scholar 

  2. Gonzaga, I. M. D.; Moratalla, A.; Eguiluz, K. I. B.; Salazar-Banda, G. R.; Cañizares, P.; Rodrigo, M. A.; Saez, C. Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chem. Eng. J. 2021, 420, 129999.

    Article  CAS  Google Scholar 

  3. Wang, Z. P.; Fang, Y. S.; Zhou, X. F.; Li, Z. B.; Zhu, H. G.; Du, F. L.; Yuan, X.; Yao, Q. F.; Xie, J. P. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203–208.

    Article  CAS  Google Scholar 

  4. Xu, Q. M.; Zheng, Z. Q.; Wang, B.; Mao, H. L.; Yan, F. Zinc ion coordinated poly (ionic liquid) antimicrobial membranes for wound healing. ACS Appl. Mater. Interfaces 2017, 9, 14656–14664.

    Article  CAS  Google Scholar 

  5. Jun, W.; Kim, M. S.; Cho, B. K.; Millner, P. D.; Chao, K. L.; Chan, D. E. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 2010, 99, 314–322.

    Article  Google Scholar 

  6. Mérian, T.; Goddard, J. M. Advances in nonfouling materials: Perspectives for the food industry. J. Agric. Food Chem. 2012, 60, 2943–2957.

    Article  CAS  Google Scholar 

  7. Zheng, W. W.; Huang, J. Y.; Li, S. H.; Ge, M. Z.; Teng, L.; Chen, Z.; Lai, Y. K. Advanced materials with special wettability toward intelligent oily wastewater remediation. ACS Appl. Mater. Interfaces 2021, 13, 67–87.

    Article  CAS  Google Scholar 

  8. Pionke, H. B.; Glotfelty, D. E. Nature and extent of groundwater contamination by pesticides in an agricultural watershed. Water Res. 1989, 23, 1031–1037.

    Article  CAS  Google Scholar 

  9. Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

    Article  CAS  Google Scholar 

  10. Martínez, J. L.; Baquero, F.; Andersson, D. I. Predicting antibiotic resistance. Nat. Rev. Microbiol. 2007, 5, 958–965.

    Article  CAS  Google Scholar 

  11. Baym, M.; Stone, L. K.; Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 2016, 351, aad3292.

    Article  CAS  Google Scholar 

  12. Zhang, S. Q.; Ye, J. W.; Sun, Y.; Kang, J.; Liu, J. H.; Wang, Y. C.; Li, Y.; Zhang, L. H.; Ning, G. L. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem. Eng. J. 2020, 390, 124523.

    Article  CAS  Google Scholar 

  13. Ma, Z.; Wei, D. D.; Yan, P.; Zhu, X.; Shan, A. S.; Bi, Z. P. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials 2015, 32, 517–530.

    Article  CAS  Google Scholar 

  14. Li, K.; Chen, J.; Xue, Y.; Ding, T. X.; Zhu, S. B.; Mao, M. T.; Zhang, L.; Han, Y. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance. Chem. Eng. J. 2021, 423, 130133.

    Article  CAS  Google Scholar 

  15. Liu, W. T.; Liu, C. D.; Liu, C.; Li, Y. Z.; Pan, L.; Wang, J. Y.; Jian, X. G. Surface chemical modification of poly (phthalazinone ether nitrile ketone) through rhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chem. Eng. J. 2021, 424, 130321.

    Article  CAS  Google Scholar 

  16. Liang, H. Y.; Lu, Q. M.; Liu, M. H.; Ou, R. X.; Wang, Q. W.; Quirino, R. L.; Luo, Y.; Zhang, C. Q. UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids. Chem. Eng. J. 2021, 421, 127774.

    Article  CAS  Google Scholar 

  17. Zhang, Y.; Song, W. L.; Li, S. W.; Kim, D. K.; Kim, J. H.; Kim, J. R.; Kim, I. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities. Chem. Commun. 2020, 56, 356–359.

    Article  CAS  Google Scholar 

  18. Lai, Y. X.; Xie, C.; Zhang, Z.; Lu, W. Y.; Ding, J. D. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials 2010, 31, 4809–4817.

    Article  CAS  Google Scholar 

  19. Lu, B. Y.; Zhu, G. Y.; Yu, C. H.; Chen, G. Y.; Zhang, C. L.; Zeng, X.; Chen, Q. M.; Peng, Q. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res. 2021, 14, 185–190.

    Article  CAS  Google Scholar 

  20. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

    Article  CAS  Google Scholar 

  21. Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 2010, 4, 5471–5479.

    Article  CAS  Google Scholar 

  22. Cavicchioli, M.; Massabni, A. C.; Heinrich, T. A.; Costa-Neto, C. M.; Abrão, E. P.; Fonseca, B. A. L.; Castellano, E. E.; Corbi, P. P.; Lustri, W. R.; Leite, C. Q. F. Pt(II) and Ag(I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities. J. Inorg. Biochem. 2010, 104, 533–540.

    Article  CAS  Google Scholar 

  23. Wei, F.; Cui, X. Y.; Wang, Z.; Dong, C. C.; Li, J. D.; Han, X. J. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 2021, 408, 127240.

    Article  CAS  Google Scholar 

  24. Patra, P.; Mitra, S.; Das Gupta, A.; Pradhan, S.; Bhattacharya, S.; Ahir, M.; Mukherjee, S.; Sarkar, S.; Roy, S.; Chattopadhyay, S. et al. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential. Colloids Surf. B 2015, 133, 88–98.

    Article  CAS  Google Scholar 

  25. Zhao, L. Z.; Wang, H. R.; Huo, K. F.; Cui, L. Y.; Zhang, W. R.; Ni, H. W.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K. Antibacterial nanostructured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716.

    Article  CAS  Google Scholar 

  26. Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.

    Article  CAS  Google Scholar 

  27. Rauner, N.; Mueller, C.; Ring, S.; Boehle, S.; Strassburg, A.; Schoeneweiss, C.; Wasner, M.; Tiller, J. C. A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv. Funct. Mater. 2018, 28, 1801248.

    Article  CAS  Google Scholar 

  28. Wei, T.; Zhan, W. J.; Yu, Q.; Chen, H. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability. ACS Appl. Mater. Interfaces 2017, 9, 25767–25774.

    Article  CAS  Google Scholar 

  29. Liu, C.; Guo, Y. Q.; Wei, X. J.; Wang, C.; Qu, M. C.; Schubert, D. W.; Zhang, C. H. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 2020, 384, 123306.

    Article  CAS  Google Scholar 

  30. Qu, Y. C.; Wei, T.; Zhao, J.; Jiang, S. B.; Yang, P.; Yu, Q.; Chen, H. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer. J. Mater. Chem. B 2018, 6, 3946–3955.

    Article  CAS  Google Scholar 

  31. Xu, Y.; Zhang, K. X.; Reghu, S.; Lin, Y. C.; Chan-Park, M. B.; Liu, X. W. Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules 2019, 20, 949–958.

    Article  CAS  Google Scholar 

  32. Xue, Y.; Pan, Y. F.; Xiao, H. N.; Zhao, Y. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv. 2014, 4, 46887–46895.

    Article  CAS  Google Scholar 

  33. Chang, L.; Wang, J.; Tong, C. Y.; Zhao, L.; Liu, X. M. Comparison of antimicrobial activities of polyacrylonitrile fibers modified with quaternary phosphonium salts having different alkyl chain lengths. J. Appl. Polym. Sci. 2016, 133, 43689.

    Google Scholar 

  34. Sundararaman, M.; Kumar, R. R.; Venkatesan, P.; Ilangovan, A. 1-Alkyl-(N,N-dimethylamino) pyridinium bromides: Inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol. 2013, 62, 241–248.

    Article  CAS  Google Scholar 

  35. Santiago, R.; Moya, C.; Palomar, J. Siloxanes capture by ionic liquids: Solvent selection and process evaluation. Chem. Eng. J. 2020, 401, 126078.

    Article  CAS  Google Scholar 

  36. Zhang, S. G.; Zhang, Q. H.; Zhang, Y.; Chen, Z. J.; Watanabe, M.; Deng, Y. Q. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80–124.

    Article  CAS  Google Scholar 

  37. Yuan, J. Y.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036.

    Article  CAS  Google Scholar 

  38. Xu, D.; Guo, J. N.; Yan, F. Porous ionic polymers: Design, synthesis, and applications. Prog. Polym. Sci. 2018, 79, 121–143.

    Article  CAS  Google Scholar 

  39. Zhang, Y. W.; Yuan, B.; Zhang, Y. Q.; Cao, Q. P.; Yang, C.; Li, Y.; Zhou, J. H. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 2020, 400, 125984.

    Article  CAS  Google Scholar 

  40. Zhou, C.; Sheng, C. J.; Gao, L. L.; Guo, J.; Li, P.; Liu, B. Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chem. Eng. J. 2021, 413, 127429.

    Article  CAS  Google Scholar 

  41. Wang, M. Y.; Shi, J.; Mao, H. L.; Sun, Z.; Guo, S. Y.; Guo, J. N.; Yan, F. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules 2019, 20, 3161–3170.

    Article  CAS  Google Scholar 

  42. Xue, Y.; Xiao, H. N.; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015, 16, 3626–3655.

    Article  CAS  Google Scholar 

  43. MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine 2017, 45, 622–628.

    Article  Google Scholar 

  44. Nederberg, F.; Zhang, Y.; Tan, J. P. K.; Xu, K. J.; Wang, H. Y.; Yang, C.; Gao, S. J.; Guo, X. D.; Fukushima, K.; Li, L. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3, 409–414.

    Article  CAS  Google Scholar 

  45. Wiradharma, N.; Khoe, U.; Hauser, C. A. E.; Seow, S. V.; Zhang, S. G.; Yang, Y. Y. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 2011, 32, 2204–2212.

    Article  CAS  Google Scholar 

  46. Fang, C.; Kong, L. L.; Ge, Q.; Zhang, W.; Zhou, X. J.; Zhang, L.; Wang, X. P. Antibacterial activities of N-alkyl imidazolium-based poly(ionic liquid) nanoparticles. Polym. Chem. 2019, 10, 209–218.

    Article  CAS  Google Scholar 

  47. Gnichwitz, J. F.; Marczak, R.; Werner, F.; Lang, N. N.; Jux, N.; Guldi, D. M.; Peukert, W.; Hirsch, A. Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: New building blocks for dye-sensitized solar cells. J. Am. Chem. Soc. 2010, 132, 17910–17920.

    Article  CAS  Google Scholar 

  48. Dong, A.; Lan, S.; Huang, J. F.; Wang, T.; Zhao, T. Y.; Wang, W. W.; Xiao, L. H.; Zheng, X.; Liu, F. Q.; Gao, G. et al. Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application. J. Colloid Interface Sci. 2011, 364, 333–340.

    Article  CAS  Google Scholar 

  49. Dharman, M. M.; Choi, H. J.; Kim, D. W.; Park, D. W. Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: Effect of variation in the silica support. Catal. Today 2011, 164, 544–547.

    Article  CAS  Google Scholar 

  50. Han, L. N.; Choi, H. J.; Choi, S. J.; Liu, B. Y.; Park, D. W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem. 2011, 13, 1023–1028.

    Article  CAS  Google Scholar 

  51. Zheng, X. X.; Luo, S. Z.; Zhang, L.; Cheng, J. P. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem. 2009, 11, 455–458.

    Article  CAS  Google Scholar 

  52. Chen, G. J.; Zhang, Y. D.; Xu, J. Y.; Liu, X. Q.; Liu, K.; Tong, M. M.; Long, Z. Y. Imidazolium-based ionic porous hybrid polymers with POSS-derived silanols for efficient heterogeneous catalytic CO2 conversion under mild conditions. Chem. Eng. J. 2020, 381, 122765.

    Article  CAS  Google Scholar 

  53. Zhang, Y. D.; Liu, K.; Wu, L.; Zhong, H.; Luo, N.; Zhu, Y. X.; Tong, M. M.; Long, Z. Y.; Chen, G. J. Silanol-enriched viologen-based ionic porous hybrid polymers for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. ACS Sustainable Chem. Eng. 2019, 7, 16907–16916.

    Article  CAS  Google Scholar 

  54. Han, L. N.; Li, H. Q.; Choi, S. J.; Park, M. S.; Lee, S. M.; Kim, Y. J.; Park, D. W. Ionic liquids grafted on carbon nanotubes as highly efficient heterogeneous catalysts for the synthesis of cyclic carbonates. Appl. Catal. A: Gen. 2012, 429–430, 67–72.

    Article  CAS  Google Scholar 

  55. Kim, J.; Kim, S. N.; Jang, H. G.; Seo, G.; Ahn, W. S. CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A:Gen. 2013, 453, 175–180.

    Article  CAS  Google Scholar 

  56. Notario, B.; Pinto, J.; Rodriguez-Perez, M. A. Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog. Mater. Sci. 2016, 78–79, 93–139.

    Article  CAS  Google Scholar 

  57. Yan, Y.; Gause, K. T.; Kamphuis, M. M. J.; Ang, C. S.; O’Brien-Simpson, N. M.; Lenzo, J. C.; Reynolds, E. C.; Nice, E. C.; Caruso, F. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 2013, 7, 10960–10970.

    Article  CAS  Google Scholar 

  58. Yang, Z. F.; Han, J. X.; Jiao, R.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Porous carbon framework derived from N-rich hypercrosslinked polymer as the efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 2019, 557, 664–672.

    Article  CAS  Google Scholar 

  59. Choi, S. J.; Choi, E. H.; Song, C.; Ko, Y. J.; Lee, S. M.; Kim, H. J.; Jang, H. Y.; Son, S. U. Hyper-cross-linked polymer on the hollow conjugated microporous polymer platform: A heterogeneous catalytic system for poly(caprolactone) synthesis. ACS Macro Lett. 2019, 8, 687–693.

    Article  CAS  Google Scholar 

  60. Wisser, F. M.; Grothe, J.; Kaskel, S. Nanoporous polymers as highly sensitive functional material in chemiresistive gas sensors. Sens. Actuators B:Chem. 2016, 223, 166–171.

    Article  CAS  Google Scholar 

  61. Bhattacharjee, S.; Lugger, J. A. M.; Sijbesma, R. P. Tailoring pore size and chemical interior of near 1 nm sized pores in a nanoporous polymer based on a discotic liquid crystal. Macromolecules 2017, 50, 2777–2783.

    Article  CAS  Google Scholar 

  62. Zhang, X.; Ong’achwa Machuki, J.; Pan, W. Z.; Cai, W. B.; Xi, Z. Q.; Shen, F. Z.; Zhang, L. J.; Yang, Y.; Gao, F. L.; Guan, M. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 2020, 14, 4045–4060.

    Article  CAS  Google Scholar 

  63. Wang, H.; Feng, E. M.; Liu, Y. M.; Zhang, C. Y. High-performance hierarchical ultrathin sheet-based CoOOH hollow nanospheres with rich oxygen vacancies for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 7777–7783.

    Article  CAS  Google Scholar 

  64. Razzaque, S.; Cheng, Y.; Hussain, I.; Tan, B. Synthesis of surface functionalized hollow microporous organic capsules for doxorubicin delivery to cancer cells. Polym. Chem. 2020, 11, 2110–2118.

    Article  CAS  Google Scholar 

  65. Song, W. L.; Zhang, Y.; Varyambath, A.; Kim, I. Guided assembly of well-defined hierarchical nanoporous polymers by Lewis acid-base interactions. ACS Nano 2019, 13, 11753–11769.

    Article  CAS  Google Scholar 

  66. Song, W. L.; Zhang, Y.; Varyambath, A.; Kim, J. S.; Kim, I. Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency. Green Chem. 2020, 22, 3572–3583.

    Article  CAS  Google Scholar 

  67. Song, W. L.; Zhang, Y.; Yu, D. G.; Tran, C. H.; Wang, M. L.; Varyambath, A.; Kim, J.; Kim, I. Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells. Biomacromolecules 2021, 22, 732–742.

    Article  CAS  Google Scholar 

  68. Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem., Int. Ed. 2005, 44, 7053–7059.

    Article  CAS  Google Scholar 

  69. Yao, C. F.; Li, H. G.; Wu, H. H.; Liu, Y. M.; Wu, P. Mesostructured polymer-supported diphenylphosphine-palladium complex: An efficient and recyclable catalyst for Heck reactions. Catal. Commun. 2009, 10, 1099–1102.

    Article  CAS  Google Scholar 

  70. Zhang, W.; Wang, Q. X.; Wu, H. H.; Wu, P.; He, M. Y. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: An efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chem. 2014, 16, 4767–4774.

    Article  CAS  Google Scholar 

  71. Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. E. Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym. Chem. 2013, 4, 1126–1131.

    Article  CAS  Google Scholar 

  72. Ghazali-Esfahani, S.; Song, H. B.; Păunescu, E.; Bobbink, F. D.; Liu, H. Z.; Fei, Z. F.; Laurenczy, G.; Bagherzadeh, M.; Yan, N.; Dyson, P. J. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chem. 2013, 15, 1584–1589.

    Article  CAS  Google Scholar 

  73. Ren, Y. Y.; Guo, J. N.; Lu, Q.; Xu, D.; Qin, J.; Yan, F. Polypropylene nonwoven fabric@poly(ionic liquid)s for switchable oil/water separation, dye absorption, and antibacterial applications. ChemSusChem 2018, 11, 1092–1098.

    Article  CAS  Google Scholar 

  74. Pang, L. Q.; Zhong, L. J.; Zhou, H. F.; Wu, X. E.; Chen, X. D. Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids Surf. B:Biointerfaces 2015, 126, 162–168.

    Article  CAS  Google Scholar 

  75. Bhunia, P.; Hwang, E.; Min, M.; Lee, J.; Seo, S.; Some, S.; Lee, H. A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem. Commun. 2012, 48, 913–915.

    Article  CAS  Google Scholar 

  76. Yang, H. W.; Jiang, B.; Sun, Y. L.; Zhang, L. H.; Sun, Z. N.; Wang, J. Y.; Tantai, X. Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 2017, 317, 32–41.

    Article  CAS  Google Scholar 

  77. Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E. et al. Antimicrobial ionic liquid-based materials for biomedical applications. Adv. Funct. Mater. 2021, 31, 2104148.

    Article  CAS  Google Scholar 

  78. Fallah, Z.; Zare, E. N.; Khan, M. A.; Iftekhar, S.; Ghomi, M.; Sharifi, E.; Tajbakhsh, M.; Nikfarjam, N.; Makvandi, P.; Lichtfouse, E. et al. Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Adv. Colloid Interface Sci. 2021, 294, 102454.

    Article  CAS  Google Scholar 

  79. Zheng, Z. Q.; Xu, Q. M.; Guo, J. N.; Qin, J.; Mao, H. L.; Wang, B.; Yan, F. Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: Effect of alkyl chain length and cations. ACS Appl. Mater. Interfaces 2016, 8, 12684–12692.

    Article  CAS  Google Scholar 

  80. Wilson, C.; Main, M. J.; Cooper, N. J.; Briggs, M. E.; Cooper, A. I.; Adams, D. J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017, 8, 1914–1922.

    Article  CAS  Google Scholar 

  81. Xu, Y.; Wang, T. Q.; He, Z. D.; Zhou, M. H.; Yu, W.; Shi, B. Y.; Huang, K. Organic ligands incorporated hypercrosslinked microporous organic nanotube frameworks for accelerating mass transfer in efficient heterogeneous catalysis. Appl. Catal. A: Gen. 2017, 541, 112–119.

    Article  CAS  Google Scholar 

  82. Rahma, H.; Asghari, S.; Logsetty, S.; Gu, X. C.; Liu, S. Preparation of hollow N-chloramine-functionalized hemispherical silica particles with enhanced efficacy against bacteria in the presence of organic load: Synthesis, characterization, and antibacterial activity. ACS Appl. Mater. Interfaces 2015, 7, 11536–11546.

    Article  CAS  Google Scholar 

  83. Qin, J.; Guo, J.; Xu, Q.; Zheng, Z.; Mao, H.; Yan, F. Synthesis of pyrrolidinium-type poly (ionic liquid) membranes for antibacterial applications. ACS Appl. Mater. Interface 2017, 12, 10504–10511.

    Article  CAS  Google Scholar 

  84. Fang, H.; Wang, J. H.; Li, L.; Xu, L. Q.; Wu, Y. X.; Wang, Y.; Fei, X.; Tian, J. Li, Y. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 2019, 365, 153–164.

    Article  CAS  Google Scholar 

  85. Yu, H.; Chen, X. J.; Cai, J.; Ye, D. D.; Wu, Y. X.; Fan, L. F.; Liu, P. F. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem. Eng. J. 2019, 369, 253–262.

    Article  CAS  Google Scholar 

  86. Wang, F.; Ren, F.; Ma, D.; Mu, P.; Wei, H. J.; Xiao, C. H.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Chen, J. X. et al. Particle and nanofiber shaped conjugated microporous polymers bearing hydantoin-substitution with high antibacterial activity for water cleanness. J. Mater. Chem. A 2018, 6, 266–274.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Sailing Program (No. 21YF1431000). I. K. thanks to the National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2021R1A2C2003685) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang, Wenliang Song, Deng-Guang Yu or Il Kim.

Electronic Supplementary Material

12274_2022_4160_MOESM1_ESM.pdf

Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, S., Xu, Y. et al. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res. 15, 5556–5568 (2022). https://doi.org/10.1007/s12274-022-4160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4160-6

Keywords

Navigation