Skip to main content
Log in

Direct Electrochemical Determination of Glyphosate Herbicide Using a Screen-Printed Carbon Electrode Modified with Carbon Black and Niobium Nanoparticles

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Glyphosate is a herbicide that has been widely used worldwide and is used in agricultural areas to control weeds and unwanted vegetation. Electrochemical sensors developed from different nanomaterials have high efficiency, excellent cost–benefit, and fast analysis time for detecting traces of environmental pollutants. This study aimed to produce an electrochemical sensor with disposable screen-printed electrodes based on carbon black modified with niobium nanoparticles to determine glyphosate in aqueous solutions. The morphology, structure and electrochemical performance of the sensor were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and cyclic voltammetry. Differential pulse voltammetry in BR buffer solution at pH 5.0 allowed the generation of a method to quantify glyphosate concentration in a linear range of 5.90–172.30 µmol/L (1.00–29.13 µg/mL), with a limit of detection calculated at 3.07 µmol/L (0.52 µg/mL). The method efficiently quantified glyphosate in real water samples and showed no interference from K+, Na+, Ca2+, Mg2+ ions or thiamethoxam, imidacloprid and carbendazim pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Battisti L, Potrich M, Sampaio AR, de Castilhos GN, Costa-Maia FM, Abati R, Martinez CBR, Sofia SH. Is glyphosate toxic to bees? A meta-analytical review. Sci Total Environ. 2021;767:145397.

    Article  CAS  PubMed  Google Scholar 

  2. Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.

    Article  CAS  PubMed  Google Scholar 

  4. Muñoz R, Guevara-Lara A, Santos JLM, Miranda JM, Rodriguez JA. Determination of glyphosate in soil samples using CdTe/CdS quantum dots in capillary electrophoresis. Microchem J. 2019;146:582–7.

    Article  Google Scholar 

  5. Amarante Junior OP, Santos TCR, Brito NM, Ribeiro ML. Glifosato: propriedades, toxicidade, usos e legislação. Quim Nova. 2002;25:589–93.

    Article  Google Scholar 

  6. Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015;16:490–1.

    Article  PubMed  Google Scholar 

  7. WHO. Guidelines for drinking water quality. 3rd ed. World Heal. Organ. Geneva: World Health Organization; 2004.

  8. Ministry of Health. Ordinance nº 2,914 (Annex VII) - Provides for control and surveillance procedures for the quality of water for human consumption and its potability standard. 2011. https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html.

  9. United States Environmental Protection Agency - USEPA. Edition of the drinking water standards and health advisories. 2018.

  10. European Safety Authority - EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015.

  11. Health Canada. Guidelines for canadian drinking water quality: Guideline technical document – Glyphosate. 1987.

  12. Gandhi K, Khan S, Patrikar M, Markad A, Kumar N, Choudhari A, Sagar P. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ Challenges. 2021;4:100149.

    Article  CAS  Google Scholar 

  13. Fang F, Wei R, Liu X. Novel pre-column derivatisation reagent for glyphosate by high-performance liquid chromatography and ultraviolet detection. Int J Environ Anal Chem. 2014;94:661–7.

    Article  CAS  Google Scholar 

  14. Islas G, Rodriguez JA, Mendoza-Huizar LH, Pérez-Moreno F, Carrillo EG. Determination of glyphosate and aminomethylphosphonic acid in soils by hplc with pre-column derivatization using 1,2-naphthoquinone-4-sulfonate. J Liq Chromatogr Relat Technol. 2014;37:1298–309.

    Article  CAS  Google Scholar 

  15. Qian K, Tang T, Shi T, Wang F, Li J, Cao Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal Chim Acta. 2009;635:222–6.

    Article  CAS  PubMed  Google Scholar 

  16. Arkan T, Csámpai A, Molnár-Perl I. Alkylsilyl derivatization of glyphosate and aminomethylphosphonic acid followed by gas chromatography mass spectrometry. Microchem J. 2016;125:219–23.

    Article  CAS  Google Scholar 

  17. Schütze A, Morales-Agudelo P, Vidal M, Calafat AM, Ospina M. Quantification of glyphosate and other organophosphorus compounds in human urine via ion chromatography isotope dilution tandem mass spectrometry. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2020.129427.

    Article  PubMed  PubMed Central  Google Scholar 

  18. De Almeida LKS, Chigome S, Torto N, Frost CL, Pletschke BI. A novel colorimetric sensor strip for the detection of glyphosate in water. Sensors Actuators B Chem. 2015;206:357–63.

    Article  Google Scholar 

  19. Wimmer B, Pattky M, Zada LG, Meixner M, Haderlein SB, Zimmermann H-P, Huhn C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal Bioanal Chem. 2020;412:4967–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zouaoui F, Bourouina-Bacha S, Bourouina M, Abroa-Nemeir I, Ben Halima H, Gallardo-Gonzalez J, Hassani NA, Alcacer A, Bausells J, Jaffrezic-Renault N, Zine N, Errachid A. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sensors Actuators B Chem. 2020;309: 127753.

    Article  CAS  Google Scholar 

  21. Regiart M, Fernández-Baldo MA, Navarro P, Pereira SV, Raba J, Messina GA. Nanostructured electrode using CMK-8/CuNPs platform for herbicide detection in environmental samples. Microchem J. 2020;157:105014.

    Article  CAS  Google Scholar 

  22. Moraes FC, Mascaro LH, Machado SAS, Brett CMA. Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis. 2010;22:1586–91.

    Article  CAS  Google Scholar 

  23. Gholivand M-B, Akbari A, Norouzi L. Development of a novel hollow fiber- pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sensors Actuators B Chem. 2018;272:415–24.

    Article  CAS  Google Scholar 

  24. Fernandes JO, Bernardino CAR, Braz BF, Mahler CF, Santelli RE, Cincotto FH. (Bio)Sensing materials: Quantum dots. Encycl Sensor Biosens. 2023;2:389–400.

    Article  Google Scholar 

  25. Cincotto FH, Moraes FC, Machado SAS. Graphene nanosheets and quantum dots: A smart material for electrochemical applications. Eur J Chem A. 2014;20:4746–53.

    Article  CAS  Google Scholar 

  26. Setznagl S, Cesarino I. Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. Int J Environ Anal Chem. 2022;102:293–305.

    Article  CAS  Google Scholar 

  27. Wong A, Lima DG, Ferreira PA, Khan S, Silva RAB, Faria JLB, Sotomayor MPT. Voltammetric sensing of glyphosate in different samples using carbon paste electrode modified with biochar and copper(II) hexadecafluoro-29H,31 phtalocyanine complex. J Appl Electrochem. 2021;51:761–8.

    Article  CAS  Google Scholar 

  28. Cincotto FH, Carvalho DAS, Canevari TC, Toma HE, Fatibello-Filho O, Moraes FC. A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Adv. 2018;8:14040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talarico D, Arduini F, Constantino A, Del Carlo M, Compagnone D, Moscone D, Palleschi G. CB as successful screen-printed electrode modifier for phenolic compound detection. Electrochem commun. 2015;60:78–82.

    Article  CAS  Google Scholar 

  30. Sfragano PS, Laschi S, Palchetti I. Sustainable printed electrochemical platforms for greener analytics. Front Chem. 2020;8:644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayat A, Marty J. Disposable screen printed electrochemicals sensors: Tools for environmental monitoring. Sensors. 2014;14:10432–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khodabakhshi S, Fulvio PF, Andreoli E. Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon N Y. 2020;162:604–49.

    Article  CAS  Google Scholar 

  33. Ni Z, Wang X, Dong Y, Yang Y, Yin Y, Zhao L, Wang X. Aptasensor based on screen-printed carbon electrodes modified with CS/AuNPs for sensitive detection of okadaic acid in shellfish. J Anal Test. 2023;7:136–46.

    Google Scholar 

  34. Durai L, Badhulika S. One-Pot synthesis of rGO supported Nb2O5 nanospheres for ultra-selective sensing of bisphenol a and hydrazine in water samples. IEEE Sens J. 2021;21:4152–9.

    Article  CAS  Google Scholar 

  35. Athar T, Hashmi A, Al-Hajry A, Ansari ZA, Ansari SG. One-pot synthesis and characterization of Nb2O5 nanopowder. J Nanosci Nanotechnol. 2012;12:7922–6.

    Article  CAS  PubMed  Google Scholar 

  36. Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y. A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays. J Electroanal Chem. 2017;791:17–22.

    Article  CAS  Google Scholar 

  37. Uekawa N, Kudo T, Mori F, Wu YJ, Kakegawa K. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. J Colloid Interface Sci. 2003;264:378–84.

    Article  CAS  PubMed  Google Scholar 

  38. Santos JS, Pontes MS, Santiago EF, Fiorucci AR, Arruda GJ. An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. Sci Total Environ. 2020;749: 142385.

    Article  CAS  PubMed  Google Scholar 

  39. IUPAC. Limit of detection in analysis. IUPAC Compend Chem Terminol. Research Triangle Park, NC: International Union of Pure and Applied Chemistry (IUPAC); 2014.

  40. Bochkova O, Khrizanforov M, Gubaidullin A, Gerasimova T, Nizameev I, Kholin K, Laskin A, Budnikova Y, Sinyashin O, Mustafina A. Synthetic tuning of coii-doped silica nanoarchitecture towards electrochemical sensing ability. Nanomaterials. 2020;10:1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mbokana JGY, Dedzo GK, Ngameni E. Grafting of organophilic silane in the interlayer space of acid-treated smectite: Application to the direct electrochemical detection of glyphosate. Appl Clay Sci. 2020;188: 105513.

    Article  CAS  Google Scholar 

  42. Xu J, Zhang Y, Wu K, Zhang L, Ge S, Yu J. A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Microchim Acta. 2017;184(7):1959–67.

    Article  CAS  Google Scholar 

  43. Aguirre MC, Urreta SE, Gomez CG. A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors Actuators B Chem. 2019;284:675–83.

    Article  CAS  Google Scholar 

  44. Vaghela C, Kulkarni M, Haram S, Aiyer R, Karve M. A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int J Biol Macromol. 2018;108:32–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Cincotto Proc. E-26/202.696/2019, Proc. E-26/010.002267/2019 and E-26/210.304/2022) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

JOF: conceptualization, methodology, data curation, formal analysis, writing—original draft preparation. CARB: conceptualization, writing—review and editing, methodology. JSF: writing—review and editing, methodology. CFM: supervision, writing—review and editing. BFB: writing—review and editing. BSA: writing—review and editing, methodology. RES: writing—review and editing. LHCS: synthesis. RJC: synthesis. ESR: synthesis. FHC: conceptualization, supervision, writing—review and editing, methodology.

Corresponding author

Correspondence to Fernando Henrique Cincotto.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.O., Bernardino, C.A.R., dos Santos Fernandes, J. et al. Direct Electrochemical Determination of Glyphosate Herbicide Using a Screen-Printed Carbon Electrode Modified with Carbon Black and Niobium Nanoparticles. J. Anal. Test. 7, 425–434 (2023). https://doi.org/10.1007/s41664-023-00276-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00276-w

Keywords

Navigation