Skip to main content
Log in

A review on phytochemical mediated synthesis of nanoparticles through fruits and vegetables extract and their potential applications

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Vegetables and fruits waste extracts are becoming increasingly popular due to their accessibility, affordability and high concentration of bioactive compounds in environmentally friendly nanoparticle biosynthesis. This is mainly because it utilizes natural sources and helps to reduce bio-waste. The current review is an effort to investigate the use of these extracts as reducing, capping and stabilizing agents in the biosynthesis of nanoparticles. The presented work critically reviews different phytochemical compositions present in fruits and vegetables waste extract and their functioning in the synthesis of nanoparticles. These nanoparticles synthesized by the environmentally friendly method have shown potential applications in a variety of fields. Further, their applications are also reviewed in this study. It is found that the extract made up of Ailanthus altissima fruit as well as the peels waste of lemons and mandarins yields a significant amount of zinc oxide and silver nanoparticles. These nanoparticles effectively interact with viruses, cancer cells, and environmental pollutants. Therefore, these nanoparticles might be a promising candidate for environmental and medical applications. Furthermore, the nanoparticles synthesized through Sterculia acuminata, tangerine peels, and cauliflower waste are useful for eliminating heavy metals and degrading organic dyes. Therefore, it can be concluded that the potential of synthesized nanoparticles derived from fruit and vegetable waste addresses the environmental issues and also propels improvements in environmental remediation and healthcare.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The author confirms that the data supporting the findings of his study are available within its supplementary material.

References

  1. Abdelsalam IM, Ghosh S, AlKafaas SS et al (2023) Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia (Bratisl) 78:163–178

    Article  Google Scholar 

  2. Ahmad RR, Harun Z, Othman MHD, Basri H, Yunos MZ, Ahmad A, Ainuddin AR (2019) Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays J Fund Appl Sci 15:268–273

    Article  Google Scholar 

  3. Ajmal N, Saraswat K, Bakht MA et al (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12:244–254

    Article  CAS  Google Scholar 

  4. Ali A, Riaz S, Sameen A et al (2022) The disposition of bioactive compounds from fruit waste, their extraction, and analysis using novel technologies: a review. Processes 10:2014

    Article  CAS  Google Scholar 

  5. Altemimi A, Lakhssassi N, Baharlouei A et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6:42

    Article  Google Scholar 

  6. Aminuzzaman M, Ying LP, Goh WS, Watanabe A (2018) Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci 41:1–10

    Article  CAS  Google Scholar 

  7. Anastas PT, Warner JC (1998) Green chemistry. Frontiers (Boulder) 640:850

    Google Scholar 

  8. Annu M, Ahmed S, Kaur G et al (2018) Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol Res (Camb) 7:923–930

    Article  CAS  Google Scholar 

  9. Aswathi VP, Meera S, Maria CGA, Nidhin M (2023) Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnol Environ Eng 8:377–397

    Article  CAS  Google Scholar 

  10. Aththanayaka S, Ramaraj N, Thiripuranathar G et al (2022) Plant mediated nanocomposites for water remediation. Phytonanotechnology. Springer, Berlin, pp 277–298

    Chapter  Google Scholar 

  11. Awad MA, Hendi AA, Ortashi KMO et al (2014) Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. Int J Phys Sci 9:34–40

    Article  Google Scholar 

  12. Aziz NAA, Ho LH, Azahari B, Bhat R, Cheng LH, Ibrahim MNM (2011) Chemical and functional properties of the native banana (Musa acuminata× balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem 128(3):748–753

    Article  Google Scholar 

  13. Bogireddy NKR, Anand KKH, Mandal BK (2015) Gold nanoparticles—synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J Mol Liq 211:868–875

    Article  CAS  Google Scholar 

  14. Cantera S, Muñoz R, Lebrero R et al (2018) Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 50:128–135

    Article  CAS  Google Scholar 

  15. Caroling G, Vinodhini E, Ranjitham AM, Shanthi P (2015) Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (Gooseberry) extract-characterisation and study of antimicrobial effects. Int J Nano Chem 1(2):53–63

    Google Scholar 

  16. Chaudhary P, Ahamad L, Chaudhary A et al (2023) Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J Environ Chem Eng 11:109591

    Article  CAS  Google Scholar 

  17. Chen Y, Liu Y, Dong Q et al (2023) Application of functionalized chitosan in food: a review. Int J Biol Macromol 235:123716

    Article  CAS  Google Scholar 

  18. Chojnacka K, Mikula K, Skrzypczak D, et al (2022) Practical aspects of biowastes conversion to fertilizers. Biomass Convers Biorefinery 1–19

  19. Choudhury AG, Roy P, Kumari S, Singh VK (2022) Utility of fruit-based industry waste. Handbook of solid waste management: sustainability through circular economy. Springer, Berlin, pp 757–784

    Chapter  Google Scholar 

  20. Coman V, Teleky B-E, Mitrea L et al (2020) Bioactive potential of fruit and vegetable wastes. Adv Food Nutr Res 91:157–225

    Article  CAS  Google Scholar 

  21. Das AK, Nanda PK, Madane P et al (2020) A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci Technol 99:323–336

    Article  CAS  Google Scholar 

  22. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10:202

    Article  CAS  Google Scholar 

  23. Delgado AM, Issaoui M, Chammem N (2019) Analysis of main and healthy phenolic compounds in foods. J AOAC Int 102:1356–1364

    Article  CAS  Google Scholar 

  24. Dias M, Caleja C, Pereira C, Calhelha RC, Kostic M, Sokovic M, Ferreira IC (2020) Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Res Int 127:108753

    Article  CAS  Google Scholar 

  25. Dini I, Grumetto L (2022) Recent advances in natural polyphenol research. Molecules 27:8777

    Article  CAS  Google Scholar 

  26. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792. https://doi.org/10.1039/C4CS00363B

    Article  CAS  Google Scholar 

  27. Dutta T, Ghosh NN, Das M et al (2020) Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: experimental and theoretical studies. J Environ Chem Eng 8:104019

    Article  CAS  Google Scholar 

  28. Dwivedi S, Tanveer A, Yadav S, et al (2022) Agro‐wastes for cost effective production of industrially important microbial enzymes: an overview. microb biotechnol Role Ecol Sustain Res 435–460

  29. Ebrahımı K, Shıravand S, Mahmoudvand H (2017) Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm J 21(4):866–871

    Article  Google Scholar 

  30. Ebrahimzadeh MA, Naghizadeh A, Amiri O, Shirzadi-Ahodashti M, Mortazavi-Derazkola S (2020) Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg Chem 94:103425

    Article  CAS  Google Scholar 

  31. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Heal Sci Eng 13:1–7

    Google Scholar 

  32. Esparza I, Jiménez-Moreno N, Bimbela F et al (2020) Fruit and vegetable waste management: conventional and emerging approaches. J Environ Manage 265:110510

    Article  CAS  Google Scholar 

  33. Fadimu GJ, Ghafoor K, Babiker EE, Al-Juhaimi F, Abdulraheem RA, Adenekan MK (2020) Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. J Food Meas Charact 14:1784–1793

    Article  Google Scholar 

  34. Fayyaz B, Zahra MB, Haider MS (2022) Screening of phenolic compounds from Spinach (Spinacia oleracea), green synthesis of iron-nanoparticles and determination of its anti-microbial effect on Escherichia coli

  35. Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV (2016) Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B Biol 162:395–401

    Article  CAS  Google Scholar 

  36. Gangapuram BR, Bandi R, Alle M, Dadigala R, Kotu GM, Guttena V (2018) Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J Mol Struct 1167:305–315

    Article  CAS  Google Scholar 

  37. Gao Y, Xu D, Ren D et al (2020) Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: a comparison study. Lwt 126:109297

    Article  CAS  Google Scholar 

  38. Godwin A (2018) Phytochemicals as nutraceuticals and pharmafoods. Phytochem Fundam Mod Tech Appl 1:179

    Google Scholar 

  39. González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD (2023) Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—a review. Plants 12:313

    Article  Google Scholar 

  40. Haldar D, Shabbirahmed AM, Singhania RR et al (2022) Understanding the management of household food waste and its engineering for sustainable valorization-a state-of-the-art review. Bioresour Technol 358:127390

    Article  CAS  Google Scholar 

  41. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. Peel extract. Nanoscale Res Lett 11:1–10

    Article  Google Scholar 

  42. Hermanns AS, Zhou X, Xu Q et al (2020) Carotenoid pigment accumulation in horticultural plants. Hortic Plant J 6:343–360

    Article  Google Scholar 

  43. Hernández-Ruiz KL, Ruiz-Cruz S, Cira-Chávez LA, Gassos-Ortega LE, Ornelas-Paz JDJ, Del-Toro-Sánchez CL, Rodríguez-Félix F (2018) Evaluation of antioxidant capacity, protective effect on human erythrocytes and phenolic compound identification in two varieties of plum fruit (Spondias spp.) by UPLC-MS. Molecules 23(12):3200

    Article  Google Scholar 

  44. Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  45. Hossain A, Abdallah Y, Ali MA et al (2019) Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules 9:863

    Article  CAS  Google Scholar 

  46. Hussain S, Jõudu I, Bhat R (2020) Dietary fiber from underutilized plant resources—a positive approach for valorization of fruit and vegetable wastes. Sustainability 12:5401

    Article  CAS  Google Scholar 

  47. Huston M, DeBella M, DiBella M, Gupta A (2021) Green synthesis of nanomaterials. Nanomaterials 11:2130

    Article  CAS  Google Scholar 

  48. Isah S, Ozbay G (2020) Valorization of food loss and wastes: feedstocks for biofuels and valuable chemicals. Front Sustain Food Syst 4:82

    Article  Google Scholar 

  49. Ishak NAIM, Kamarudin SK, Timmiati SN (2019) Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater Res Express 6:112004

    Article  CAS  Google Scholar 

  50. Islam F, Shohag S, Uddin MJ et al (2022) Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials (Basel) 15:2160

    Article  CAS  Google Scholar 

  51. Jacob SJP, Prasad VS, Sivasankar S, Muralidharan P (2017) Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica-screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol 109:951–956

    Article  CAS  Google Scholar 

  52. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng, C 59:296–302

    Article  CAS  Google Scholar 

  53. Jalali T, Ghanavati F, Osfouri S (2024) Green synthesis of ZnO nanoparticles using marine brown algae (Cystoseira) extract comprising sol–gel, and combustion techniques based on dye-sensitized solar cells application. Int J Mod Phys B 38(14):2450178

    Article  CAS  Google Scholar 

  54. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 144:17–22

    Article  CAS  Google Scholar 

  55. Kadam J, Dhawal P, Barve S, Kakodkar S (2020) Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg 2+ biosensing. SN Appl Sci 2:1–16

    Article  Google Scholar 

  56. Karimi M, Sadeghi R, Kokini J (2017) Pomegranate as a promising opportunity in medicine and nanotechnology. Trends food Sci Technol 69:59–73

    Article  CAS  Google Scholar 

  57. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365

    Article  CAS  Google Scholar 

  58. Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9(1):33–38

    Article  CAS  Google Scholar 

  59. Kaur R, Shekhar S, Prasad K (2022) Secondary metabolites of fruits and vegetables with antioxidant potential. Second Metab Rev

  60. Khani R, Roostaei B, Bagherzade G, Moudi M (2018) Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq 255:541–549

    Article  CAS  Google Scholar 

  61. Khan Y, Sadia H, Ali Shah SZ et al (2022) Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12:1386

    Article  CAS  Google Scholar 

  62. Kumar B, Smita K, Cumbal L, Debut A (2014) Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl 2014:523869

    Article  Google Scholar 

  63. Kumar H, Bhardwaj K, Sharma R et al (2020) Fruit and vegetable peels: utilization of high value horticultural waste in novel industrial applications. Molecules 25:2812. https://doi.org/10.3390/MOLECULES25122812

    Article  CAS  Google Scholar 

  64. Kumar H, Kuča K, Bhatia SK et al (2020) Applications of nanotechnology in biosensor-based detection of foodborne pathogens. Sensors (Switzerland) 20:1996. https://doi.org/10.3390/S20071966

    Article  Google Scholar 

  65. Lanzotti V, Scala F, Bonanomi G (2014) Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13:769–791

    Article  CAS  Google Scholar 

  66. Laufenberg G, Kunz B, Nystroem M (2003) Transformation of vegetable waste into value added products::(A) the upgrading concept;(B) practical implementations. Bioresour Technol 87:167–198

    Article  CAS  Google Scholar 

  67. Lfitat A, Zejli H, Bousraf FZ et al (2021) Comparative assessment of total phenolics content and in vitro antioxidant capacity variations of macerated leaf extracts of Olea europaea L. and Argania spinosa (L.) skeels. Mater Today Proc 45:7271–7277

    Article  CAS  Google Scholar 

  68. Liu H, Zhang X, Xu Z et al (2020) Role of polyphenols in plant-mediated synthesis of gold nanoparticles: identification of active components and their functional mechanism. Nanotechnology 31:415601. https://doi.org/10.1088/1361-6528/AB9E25

    Article  CAS  Google Scholar 

  69. Luque PA, Soto-Robles CA, Nava O et al (2018) Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J Mater Sci Mater Electron 29:9764–9770

    Article  CAS  Google Scholar 

  70. Madhumitha G, Fowsiya J, Gupta N et al (2019) Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. J Phys Chem Solids 127:43–51

    Article  CAS  Google Scholar 

  71. Mahmoud AED, Al-Qahtani KM, Alflaij SO et al (2021) Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep 11:12547

    Article  CAS  Google Scholar 

  72. Majumdar M, Biswas SC, Choudhury R, Upadhyay P, Adhikary A, Roy DN, Misra TK (2019) Synthesis of gold nanoparticles using Citrus macroptera fruit extract: anti-biofilm and anticancer activity. ChemistrySelect 4(19):5714–5723

    Article  CAS  Google Scholar 

  73. Masand P, Ashique S, Afzal O et al (2023) Biogenic nanoparticles from waste fruit peels: synthesis, applications, challenges and future perspectives. Int J Pharm 643:123223

    Article  Google Scholar 

  74. Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Li B (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol 10:820

    Article  Google Scholar 

  75. Md Salim NS, Gariépy Y, Raghavan V (2017) Hot air drying and microwave-assisted hot air drying of broccoli stalk slices (Brassica oleracea L. Var. Italica). J Food Process Preserv 41:e12905

    Article  Google Scholar 

  76. Mejía YR, Bogireddy NKR (2022) Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv 12:18661–18675

    Article  Google Scholar 

  77. Moodley JS, Krishna SBN, Pillay K, Sershen F, Govender P (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol 9(1):015011

    Article  Google Scholar 

  78. Mythili R, Selvankumar T, Kamala-Kannan S et al (2018) Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett 225:101–104

    Article  CAS  Google Scholar 

  79. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862

    Article  CAS  Google Scholar 

  80. Nagajyothi PC, An TNM, Sreekanth TVM et al (2013) Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater Lett 108:160–163

    Article  CAS  Google Scholar 

  81. Nakamoto M, Kunimura K, Suzuki J, Kodera Y (2020) Antimicrobial properties of hydrophobic compounds in garlic: allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp Ther Med 19:1550–1553

    CAS  Google Scholar 

  82. Nasrollahzadeh M, Sajadi SM, Issaabadi Z, Sajjadi M (2019) Biological sources used in green nanotechnology. Interface science and technology. Elsevier, Amsterdam, pp 81–111

    Google Scholar 

  83. Nirmala JG, Akila S, Narendhirakannan RT, Chatterjee S (2017) Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol 28(4):1170–1184

    Article  CAS  Google Scholar 

  84. Omar RA, Chauhan D, Talreja N et al (2022) Vegetables waste for biosynthesis of various nanoparticles. Agri-waste and microbes for production of sustainable nanomaterials. Elsevier, Amsterdam, pp 281–298

    Chapter  Google Scholar 

  85. Omran BA (2020) Nanobiotechnology: a multidisciplinary field of science. Springer

    Book  Google Scholar 

  86. Omran BA, Aboelazayem O, Nassar HN et al (2021) Biovalorization of mandarin waste peels into silver nanoparticles and activated carbon. Int J Environ Sci Technol 18:1119–1134

    Article  CAS  Google Scholar 

  87. Ovais M, Khalil AT, Islam NU et al (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102:6799–6814

    Article  CAS  Google Scholar 

  88. Owusu-Apenten R, Vieira E (2022) Fruits and vegetables. Elementary food science. Springer, Berlin, pp 513–536

    Google Scholar 

  89. Panda SK, Mishra SS, Kayitesi E, Ray RC (2016) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environ Res 146:161–172. https://doi.org/10.1016/J.ENVRES.2015.12.035

    Article  CAS  Google Scholar 

  90. Patra JK, Kwon Y, Baek KH (2016) Green biosynthesis of gold nanoparticles by onion peel extract: synthesis, characterization and biological activities. Adv Powder Technol 27(5):2204–2213

    Article  CAS  Google Scholar 

  91. Pechyen C, Ponsanti K, Tangnorawich B, Ngernyuang N (2021) Waste fruit peel–mediated green synthesis of biocompatible gold nanoparticles. J Market Res 14:2982–2991

    CAS  Google Scholar 

  92. Pereira JA, Berenguer CV, Andrade CF, Câmara JS (2022) Unveiling the bioactive potential of fresh fruit and vegetable waste in human health from a consumer perspective. Appl Sci 12(5):2747

    Article  CAS  Google Scholar 

  93. Petkowicz CL, Williams PA (2020) Pectins from food waste: characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocoll 107:105930

    Article  CAS  Google Scholar 

  94. Priya MR K, Iyer PR (2020) Antiproliferative effects on tumor cells of the synthesized gold nanoparticles against Hep2 liver cancer cell line. Egypt Liver J 10:1–12

    Article  Google Scholar 

  95. Quintana SE, Salas S, García-Zapateiro LA (2021) Bioactive compounds of mango (Mangifera indica): a review of extraction technologies and chemical constituents. J Sci Food Agric 101(15):6186–6192

    Article  CAS  Google Scholar 

  96. Ramírez-Hernández MJ, Valera-Zaragoza M, Viñas-Bravo O, Huerta-Heredia AA, Peña-Rico MA, Juarez-Arellano EA, Sánchez-Valdes S (2022) In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles. Beilstein J Nanotechnol 13(1):1505–1519

    Article  Google Scholar 

  97. Rani N, Singh P, Kumar S et al (2023) Plant-mediated synthesis of nanoparticles and their applications: a review. Mater Res Bull 163:112233

    Article  CAS  Google Scholar 

  98. Rassaei L, Marken F, Sillanpää M et al (2011) Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends Anal Chem 30:1704–1715

    Article  CAS  Google Scholar 

  99. Ritu, Verma KK, Das A, Chandra P (2023) Phytochemical-based synthesis of silver nanoparticle: mechanism and potential applications. Bionanoscience 13:1–22

    Article  Google Scholar 

  100. Rodríguez-Martínez B, Gullón B, Yáñez R (2021) Identification and recovery of valuable bioactive compounds from potato peels: a comprehensive review. Antioxidants 10(10):1630

    Article  Google Scholar 

  101. Rudke CRM, Zielinski AAF, Ferreira SRS (2023) From biorefinery to food product design: peach (Prunus persica) by-products deserve attention. Food Bioprocess Technol 16(6):1197–1215

    Article  Google Scholar 

  102. Rueda D, Arias V, Zhang Y et al (2020) Low-cost tangerine peel waste mediated production of titanium dioxide nanocrystals: synthesis and characterization. Environ Nanotechnol, Monit Manag 13:100285

    Google Scholar 

  103. Rupasinghe HPV (2015) Application of NMR spectroscopy in plant polyphenols associated with human health. Applications of NMR spectroscopy. Elsevier, Amsterdam, pp 3–92

    Google Scholar 

  104. Sagar NA, Pareek S, Sharma S et al (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17:512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  Google Scholar 

  105. Saidu FK, Mathew A, Parveen A et al (2019) Novel green synthesis of silver nanoparticles using clammy cherry (Cordia obliqua Willd) fruit extract and investigation on its catalytic and antimicrobial properties. SN Appl Sci 1:1–13

    Article  Google Scholar 

  106. Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KGM, Keum YS (2022) Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 11(2):239

    Article  CAS  Google Scholar 

  107. Salem NM, Awwad AM (2022) Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chem Int 8:12–17

    CAS  Google Scholar 

  108. Samuel MS, Ravikumar M, John JA et al (2022) A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 12:459

    Article  CAS  Google Scholar 

  109. El SAM (2020) Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synth 9:304–339

    Article  Google Scholar 

  110. Shrestha S, Khatiwada JR, Sharma HK, Qin W (2021) Bioconversion of fruits and vegetables wastes into value-added products. Sustain Bioconversion Waste Value Added Prod 145–163

  111. Skiba M, Vorobyova V, Sorochkina K (2022) Phyto-green (grape, orange pomace) and chemical fabricated silver nanoparticles: influence type of stabilizers component on antioxidant and antimicrobial activity. J Clust Sci 1–19

  112. Sooch BS, Mann MK, Sharma P, Ray RC (2022) Phenolic and other bioactive compounds from vegetable and fruit waste: extraction methods and their possible utilization. Fruits and vegetable wastes: valorization to bioproducts and platform chemicals. Springer, Berlin, pp 81–114

    Chapter  Google Scholar 

  113. Stan M, Lung I, Soran M-L et al (2017) Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf Environ Prot 107:357–372

    Article  CAS  Google Scholar 

  114. Suhag R, Kumar R, Dhiman A, et al (2022) Fruit peel bioactives, valorisation into nanoparticles and potential applications: a review. Crit Rev Food Sci Nutr 1–20

  115. Sukri SNAM, Shameli K, Wong MMT, Teow SY, Chew J, Ismail NA (2019) Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J Mol Struct 1189:57–65

    Article  Google Scholar 

  116. Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol B Biol 161:122–128

    Article  CAS  Google Scholar 

  117. Tavker N, Yadav VK, Yadav KK, Cabral-Pinto MM, Alam J, Shukla AK, Alhoshan M (2021) Removal of cadmium and chromium by mixture of silver nanoparticles and nano-fibrillated cellulose isolated from waste peels of Citrus sinensis. Polymers 13(2):234

    Article  CAS  Google Scholar 

  118. Thi TUD, Nguyen TT, Thi YD et al (2020) Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv 10:23899–23907

    Article  Google Scholar 

  119. Timoszyk A (2018) A review of the biological synthesis of gold nanoparticles using fruit extracts: scientific potential and application. Bull Mater Sci 41:1–11

    Article  CAS  Google Scholar 

  120. Tiwari BK, Brunton N, Brennan CS (2015) Handbook of plant food phytochemicals. Wiley-Blackwell, Hoboken

    Google Scholar 

  121. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Gopi N, Ekambaram P, Pachaiappan R, Suriyanarayanamoorthy M (2017) Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog 102:173–183

    Article  CAS  Google Scholar 

  122. Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. RAP Publ 4(2013):67

    Google Scholar 

  123. Wang C, Gao X, Chen Z et al (2017) Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel) 9:689

    Article  CAS  Google Scholar 

  124. Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51(3):609–614

    Article  CAS  Google Scholar 

  125. Wong TL, Strandberg KR, Croley CR, Fraser SE, Venkata KCN, Fimognari C, Bishayee A (2021) Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Seminars in cancer biology, vol 73. Academic Press, Cambridge, pp 265–293

    Google Scholar 

  126. Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11(2):622–646

    Article  CAS  Google Scholar 

  127. Xu M, Wan Z, Yang X (2021) Recent advances and applications of plant-based bioactive saponins in colloidal multiphase food systems. Molecules 26:6075

    Article  CAS  Google Scholar 

  128. Yang N, WeiHong L, Hao L (2014) Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett 134:67–70

    Article  CAS  Google Scholar 

  129. Yap YH, Azmi AA, Mohd NK, Yong FSJ, Kan SY, Thirmizir MZA, Chia PW (2020) Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab J Sci Eng 45:4797–4807

    Article  CAS  Google Scholar 

  130. Ying S, Guan Z, Ofoegbu PC et al (2022) Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 26:102336

    Article  CAS  Google Scholar 

  131. Yugandhar P, Vasavi T, Jayavardhana Rao Y, Uma Maheswari Devi P, Narasimha G, Savithramma N (2018) Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J Clust Sci 29:743–755

    Article  CAS  Google Scholar 

  132. Yusefi M, Yee OS, Shameli K (2021) Bio-mediated production and characterisation of magnetic nanoparticles using fruit peel extract. J Res Nanosci Nanotechnol 1(1):53–61

    Article  Google Scholar 

  133. Yusuf E, Tkacz K, Turkiewicz IP, Wojdyło A, Nowicka P (2021) Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur Food Res Technol 247:3053–3062

    Article  CAS  Google Scholar 

  134. Zafar S, Zafar A (2019) Biosynthesis and characterization of silver nanoparticles using fruits extract and their antimicrobial and cytotoxic effects. Open Biotechnol J 13(1):37–46

    Article  CAS  Google Scholar 

  135. Zahra T, Ahmad KS, Sharif S (2021) Identification and implication of organic compounds of Viola odorata: a potential source for bio-fabrication of nickel oxide nanoparticles. Appl Nanosci 11:1593–1603

    Article  CAS  Google Scholar 

  136. Zahra Z, Habib Z, Chung S, Badshah MA (2020) Exposure route of TiO2 NPs from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials 10:1469

    Article  CAS  Google Scholar 

  137. Zamare D, Vutukuru SS, Babu R (2016) Biosynthesis of nanoparticles from agro-waste: a sustainable approach. Int J Eng Appl Sci Technol 1:85–92

    Google Scholar 

  138. Zuhrotun A, Oktaviani DJ, Hasanah AN (2023) Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules 28:3240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Bhatt.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this review article titled “A review on phytochemical mediated synthesis of nanoparticles through fruits and vegetables extract and their potential applications.” No funding from external sources, either public or private, has been received to support this work. The authors have no financial relationships with any organizations that might have an interest in the content of this review article. The authors are committed to transparency and scientific integrity in their work and have followed ethical guidelines in conducting research, analyzing data, and presenting findings. Any previously published work or text that has been included in this review article is appropriately cited and credited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S., Saraswat, S. A review on phytochemical mediated synthesis of nanoparticles through fruits and vegetables extract and their potential applications. Nanotechnol. Environ. Eng. (2024). https://doi.org/10.1007/s41204-024-00370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-024-00370-z

Keywords

Navigation