Skip to main content
Log in

Discussion of the Tax Scheme for Cleaner Water Use

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Resource and effluent taxes are the typical Pigovian taxes used for water environment protection. Their original purpose is to motivate innovative or green technologies. This article develops a model to examine the influence of these two types of taxes on the firm’s technology decision. In the model, the local government imposes tax policy, and in response, a profit-maximizing monopolistic firm selects technology, water consumption, production quantity and product price. By comparing the corresponding impacts on water conservation, effluent reduction and social welfare, this analysis reveals different attributes of these two types of taxes. First, neither of these taxes necessarily motivates the firm to choose the innovative technology. For the effluent tax, an initial increase may motivate the firm to leverage new technology for profit growth, but a further increase in the tax burden may induce a reverse effect. For the resource tax, the firm’s technology choice depends on downstream ecological compensation. Second, with the same tax burden, the resource tax performs more effectively than the effluent tax on both water conservation and pollutant effluent reduction, which supports the necessity of external ecological compensation. Third, the effects on social welfare improvement present two different trends, and there exists a threshold of tax rate on the gap between them. The threshold changes according to the efficiency of new technology, which implies the appropriate type of tax and the optimal range of the tax rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The assumption of \(\xi\) is to ensure a reasonable range for tax rates in the following analysis. See Appendix 2 (3) and Appendix 4.

  2. For \(A\) is considered to be larger than any other constant in this paper, we can obtain that \(4{(A+\xi \rho )}^{2}-4(\rho +1)(4\Theta +2A\xi +{\xi }^{2}\rho -{\xi }^{2})=4{A}^{2}-8A\xi +4{\xi }^{2}-16\Theta -16\rho \Theta \ge 0\), so \(\Delta {\pi }_{t}=0\) has real roots.

  3. For the proof of \({t}_{2}\le {t}^{\mathrm{lim}}\) and the existence of Region 4, see Appendix 1 (1).

  4. For the assumption of \(A\) and \(\rho\), the discriminant of \(\Delta S{W}_{t}=0\) is.

    \(\frac{1-\rho }{8}[{(2A+2\xi \rho -4\rho -8)}^{2}-4(1+\rho )(4A-6A\xi +4\xi \rho +4\xi -3\rho {\xi }^{2}+3{\xi }^{2}-8\Theta )]=\frac{1-\rho }{2}({A}^{2}-4A-6A\xi +4\xi +16\rho -8\Theta -8\rho \Theta +3{\xi }^{2}+4{\rho }^{2}-2{\rho }^{2}{\xi }^{2}-4A\xi \rho +16)\ge 0\); Then, \(\Delta S{W}_{t}=0\) has real roots.

  5. For the assumption of \(A\) and \(\pi (\rho <1,t=0,\tau )=\frac{1}{4}{[A-\tau -(1-\rho )\xi ]}^{2}-(1-\rho )\Theta \ge 0\), \(\tau \le A-4(1-\rho )\Theta -(1-\rho )\xi\). Then, \(\tau \in [0,{\tau }^{\mathrm{lim}}),{\tau }^{\mathrm{lim}}=A-4(1-\rho )\Theta -(1-\rho )\xi\).

  6. \(S=\frac{\rho-1}8(4A-6A\xi-8\Theta)\geq0\)  is a part of \(\mathrm\Delta{SW}_\tau\) , it’s almost the minimum value satisfies \(\mathrm\Delta{SW}_{\tau G}\geq0\) and \(\mathrm\Delta\pi_{\tau G}\geq0\) . For the proof, see Appendix 4.

References

  1. Tortajada C (2006) Water management in Singapore. Int J Water Resour Dev 22(2):227–240. https://doi.org/10.1080/07900620600691944

    Article  Google Scholar 

  2. Mayburov I, Leontyeva Y (2014) Reducing the negative impact of motor transport on the environment: prospects for the use of fiscal instruments in Russia. Energy Sustain 186:863–874. https://doi.org/10.2495/ESUS140771

    Article  Google Scholar 

  3. Caswell M, Lichtenberg E, Zilberman D (1990) The effects of pricing policies on water conservation and drainage. Am J Agr Econ 72(4):883–890. https://doi.org/10.2307/1242620

    Article  Google Scholar 

  4. Zabel TF, Andrews K, Rees Y (2010) The use of economic instruments for water management in selected EU Member countries. Water Environ J 12(4):268–272. https://doi.org/10.1111/j.1747-6593.1998.tb00184.x

    Article  Google Scholar 

  5. Höglund and Lena (1999) Household demand for water in Sweden with implications of a potential tax on water use. Water Res Res 35(12):3853–3864

    Article  Google Scholar 

  6. Bongaerts JC, Kraemer A (1989) Permits and effluent charges in the water pollution control policies of France, West Germany and the Netherlands. Environ Monit Assess 12(2):127–147. https://doi.org/10.1007/BF00394183

    Article  CAS  Google Scholar 

  7. Möller-Gulland J, Lago M, Mcglade K, et al. (2015) Effluent tax in Germany[M]// Use of Economic Instruments in Water Policy

  8. Adam B. Jaffe, Richard G. Newell and Robert N. Stavins, 2002. Environmental policy and technological change. Environ Res Econ, 22(1–2), pp.41–70. https://link.springer.com/article/https://doi.org/10.1023/2FA/3A1015519401088.

  9. Ana Cicenia, 2018. Environmental protection tax in China. China Briefing News, http://www.china-briefing.com/news/china-implements-new-environmental-protection-tax/.

  10. Xu L, Lee S-H (2018) Environmental policies with excess burden of taxation in free-entry mixed markets. Int Rev Econ Finance, 58 1–13. https://linkinghub.elsevier.com/retrieve/pii/S1059056018301369.

  11. Conrad K (1999) Resource and waste taxation in the theory of the firm with recycling activities. Environ Res Econ, 14(2), 217–242. https://link.springer.com/article/https://doi.org/10.1023/A:1008301626219

  12. Goulder LH (1994) Energy taxes: traditional efficiency effects and environmental implications. Tax Policy and the Economy 8:105–158. https://doi.org/10.1086/tpe.8.20061820

    Article  Google Scholar 

  13. Kilimani N, van Heerden J, Bohlmann H (2015) Water taxation and the double dividend hypothesis. Water Res Econ 10:68–91. https://doi.org/10.1016/j.wre.2015.03.001

    Article  Google Scholar 

  14. Cropper ML, Oates WE (1992) Environmental economics: a survey. J Econ Lit 30(2), pp.675–740. https://www.jstor.org/stable/2727701.

  15. D’Arge RC, Kogiku KC (1973) Economic growth and the environment. Rev Econ Stud 40(1):61–77. https://doi.org/10.2307/2296740

    Article  Google Scholar 

  16. Cairns RD (2014) The green paradox of the economics of exhaustible resources. Energy Policy, 65, pp.78–85. http://www.sciencedirect.com/science/article/pii/S0301421513010707.

  17. Slade ME (1980) The effects of higher energy prices and declining ore quality: copper—aluminium substitution and recycling in the USA. Resour Policy 6(3):223–239. https://doi.org/10.1016/0301-4207(80)90042-2

    Article  Google Scholar 

  18. Stiglitz J (1975) The efficiency of market prices in long-run allocations in the oil in- dustry, Studies in Energy Tax Policy, Ballinger Cambridge, Mass, pp.55–99

  19. Groth C, Schou P (2007) Growth and non-renewable resources: the different roles of capital and resource taxes. J Environ Econ Manage 53(1):0–98

    Article  Google Scholar 

  20. Krass D, Nedorezov T, Ovchinnikov A (2013) Environmental taxes and the choice of green technology. Prod Oper Manag 22(5):1035–1055. https://doi.org/10.1111/poms.12023

    Article  Google Scholar 

  21. Ian Sue Wing, 2006. Induced technological change: firm innovatory responses to environmental regulation. http://120.52.51.13/people.bu.edu/isw/papers/itc_dynamic_theory.pdf.

  22. Acemoglu D, Aghion P (2012) Leonardo Bursztyn and David Hemous. The Environment and Directed Technical Change. Am Econ Rev 102(1):131–166. https://doi.org/10.1257/aer.102.1.131

    Article  Google Scholar 

  23. Zhang M, Ni J, Yao L (2018) Pigovian tax-based equilibrium strategy for waste-load allocation in river system. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.05.063

    Article  Google Scholar 

  24. Orozco DT, Molina C, Cano JHV (2017) Pigouvian taxes and payments for environmental services in an economic model restricted by the resilience of a body of water. Water Res Econ 19:28–40. https://doi.org/10.1016/j.wre.2017.09.001

    Article  Google Scholar 

  25. André Grimaud and Rouge L, 2008. Environment, directed technical change and economic policy. Environmental & Resource Economics, 41(4), pp.439–463. Carl Ganter. Water crises are a top global risk[EB/OL]. World Econ Forum, 2015. https://www.weforum.org/agenda/2015/01/why-world-water-crises-are-a-top-global-risk/.

  26. Bekhet HA, Matar A, Yasminc T (2017) CO2 emissions, energy consumption, economic growth, and financial development in GCC countries: dynamic simultaneous equation models. Renew Sustain Energy Rev 70:117–132. https://doi.org/10.1016/j.rser.2016.11.089

    Article  Google Scholar 

  27. Bastola U, Sapkota P (2015) Relationships among energy consumption, pollution emission, and economic growth in Nepal. Energy 80:254–262. https://doi.org/10.1016/j.energy.2014.11.068

    Article  Google Scholar 

  28. Mcdonald S, Poyago-Theotoky J (2016) Green technology and optimal emissions taxation. J Publ Econ Theor. https://doi.org/10.1111/jpet.12165

    Article  Google Scholar 

  29. Turpie JK, Marais C, Blignaut JN (2008) The working for water programme: evolution of a payments for ecosystem services mechanism that addresses both poverty and ecosystem service delivery in South Africa. Ecol Econ 65(4):788–798. https://doi.org/10.1016/j.ecolecon.2007.12.024

    Article  Google Scholar 

  30. Li N (2018) Study on river basin ecological compensation mechanism of urban agglomeration in the middle reaches of the Yangtze River, (in Chinese)

  31. Häckner J, Mathias H (2016) Welfare effects of taxation in oligopolistic markets. J Econ Theor, 163, pp.141–166. https://linkinghub.elsevier.com/retrieve/pii/S0022053116000089. Accessed 7 Aug 2021

  32. Kicsiny R, Piscopo V, Scarelli A, Varga Z (2014) Dynamic Stackelberg game model for water rationalization in drought emergency. J Hydrol 517:557–565. https://doi.org/10.1016/j.jhydrol.2014.05.061

    Article  Google Scholar 

  33. Hajime Sugeta and Shigeru Matsumoto (2005) Green Tax Reform in an oligopolistic industry. Environ Res Econ 31(3):253–274. https://doi.org/10.1007/s10640-004-8249-z

    Article  Google Scholar 

Download references

Funding

This paper was funded by the National Natural Science Foundation of PRC (71771057, 72104057), Special research project on Ideological and political theory course in Colleges and universities funded by National Social Science Foundation (21VSZ077), Innovation Projects of Colleges and Universities in Guangdong Province (2017GXJK052), Natural Science Foundation of Guangdong Province of China (2021A1515011929) and the Project of Philosophy and Social Sciences Research in Guangdong (GD20YYJ01, GD20CYJ08).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design, material preparation and analysis. The first draft of the manuscript was written by Jia-yi Guo, and Zi-rui Chen commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Zi-rui Chen.

Ethics declarations

Ethics Approval

Ethical approval was not required for this research.

Consent to Participate

Consent to participate was not relevant to this research.

Consent for Publication

The authors agree to the publication in this journal. The authors confirm that the work described has not been previously published (except in the form of an abstract or as part of a published lecture, review, or thesis), that it is not under consideration for publication elsewhere, that its publication has been approved by all coauthors and that its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work was carried out.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

  1. 1.1

    Proof of the existence of Region 4 \(t\in \left[{t}_{2},{t}^{\mathrm{lim}}\right)\) from Proposition 1.

According to Eqs. (13) and (15),

$$\begin{array}{c}\begin{array}{c}{t}^{\mathrm{lim}}-{t}_{2}=\xi +\frac{A-\xi +2\sqrt{\xi (1-\rho )}}{\rho }-\frac{1}{\rho +1}(A+\xi \rho +\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta })\\ =\xi +\frac{1}{\rho (\rho +1)}[A-\xi (\rho +1)-\xi {\rho }^{2}+2(\rho +1)\sqrt{\xi (1-\rho )}-\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta })]\end{array}\\ \ge \frac{1}{\rho (\rho +1)}[A-\xi (\rho +1)-\xi {\rho }^{2}-\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta })]\end{array}$$

We need to compare \(A-\xi (\rho +1)-\xi {\rho }^{2}\) and \(\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }\) to determine whether \({t}^{\mathrm{lim}}-{t}_{2}\ge 0\).

$${[A-\xi (\rho +1)-\xi {\rho }^{2}]}^{2}={A}^{2}-2A\xi {\rho }^{2}-2A\xi \rho -2A\xi +{\xi }^{2}{\rho }^{4}+2{\xi }^{2}{\rho }^{3}+3{\xi }^{2}{\rho }^{2}+2{\xi }^{2}\rho +{\xi }^{2}[\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }){]}^{2}={\rho }^{2}{A}^{2}-2A\xi {\rho }^{2}+{\xi }^{2}{\rho }^{2}-4\Theta {\rho }^{2}-4{\rho }^{3}\Theta$$
$${[A-\xi (\rho +1)-\xi {\rho }^{2}]}^{2}-[\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }){]}^{2}=A[(1-{\rho }^{2})A-2\xi (\rho +1)]+{\xi }^{2}{\rho }^{4}+2{\xi }^{2}{\rho }^{3}+2{\xi }^{2}{\rho }^{2}+2{\xi }^{2}\rho +{\xi }^{2}+4\Theta {\rho }^{2}+4{\rho }^{3}\Theta$$

For the assumption of \(A\) and \(\rho\),\((1-{\rho }^{2})A-2\xi (\rho +1)\ge 0\), then

$${[A-\xi (\rho +1)-\xi {\rho }^{2}]}^{2}-[\rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }){]}^{2}\ge 0$$

This implies that \({t}^{\mathrm{lim}}-{t}_{2}\ge 0\), and Region 4 \(t\in [{t}_{2},{t}^{\mathrm{lim}})\) is reasonable and exists.

  1. 1.1

    Proof of \({t}_{1}>\xi\)

    According to Eq. (14),

    $${t}_{1}-\xi =\frac{1}{\rho +1}[A+\xi \rho -\xi (\rho +1)-\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }]$$
    $$=\frac{1}{\rho +1}[A-\xi -\sqrt{{(A-\xi )}^{2}-4\Theta (1+\rho })]\ge 0$$

    \({t}_{1}>\xi\) is proved.

Appendix 2

  1. 2.1

    Proof of \({t}_{4}\ge 0\)

According to Eq. (22), we need to compare \({\lambda }_{1}\) and \(2\rho -A-\xi \rho +4\)

$${\lambda }_{1}^{2}-{(2\rho -A-\xi \rho +4)}^{2}=(\rho +1)[A(6\xi -4)-4\xi +8\Theta -4\xi \rho +3\rho {\xi }^{2}-3{\rho }^{2}]$$

For \(\xi \ge 2\) and the assumption of \(A\), \({t}_{4}\ge 0\).

  1. 2.2

    Proof of \({t}_{4}\le {t}^{\mathrm{lim}}\)

According to Eqs. (13) and (22),

$${t}^{\mathrm{lim}}-{t}_{4}=\xi +\frac{A-\xi +2\sqrt{\xi (1-\rho )}}{\rho }-\frac{1}{\rho +1}(2\rho -A-\xi \rho +{\lambda }_{1}+4)$$
$$=(\frac{1}{\rho }+\frac{1}{\rho +1})A+\frac{-\xi +2\sqrt{\xi (1-\rho )}}{\rho }-\frac{1}{\rho +1}(2\rho -\xi \rho +\lambda +4)+\xi$$

For the assumption of \(A\), \(\rho\) and \(\xi\), \({t}^{\mathrm{lim}}-{t}_{4}\ge 0\), then \({t}_{4}\le {t}^{\mathrm{lim}}\).

  1. 2.3

    Proof of \({t}_{4}\ge \xi\)

According to Eq. (22),\({t}_{4}-\xi =\frac{1}{\rho +1}[2\rho -A-\xi \rho +{\lambda }_{1}+4-\xi (\rho +1)]\)

We need to compare the \({\lambda }_{1}\) and \(2\rho -A-\xi \rho +4-\xi (\rho +1)\)

$${\lambda }_{1}^{2}-{(2\rho -A-2\xi \rho -\xi +4)}^{2}=4(\rho +1)[A(\xi -1)+\xi +2\Theta -{\xi }^{2}]\ge 0$$

Then, \({t}_{4}\ge \xi\) is proved.

Appendix 3

  1. 3.

    Proof of \({t}_{2}>{t}_{4}\).

According to Eqs. (15) and (22),

$$\begin{array}{c}({t}_{4}^{2}-{t}_{2}^{2}){(\rho +1)}^{2}\\ ={(2\rho -A-\xi \rho +{\lambda }_{1}+4)}^{2}-{[A+\xi \rho +\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }]}^{2}\\ \begin{array}{c}=(8{\lambda }_{1}+4{\lambda }_{1}\rho -2{\lambda }_{1}A)+(-20A-2A\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }+8A\xi +8A\xi \rho )-24\xi \rho \\ -2{\lambda }_{1}\xi \rho +[(32+12\Theta )(\rho +1)-2\xi \rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }]-12\xi {\rho }^{2}\\ -4{\xi }^{2}-4\xi +[4(2+{\xi }^{2}){\rho }^{2}-12A\rho ]\end{array}\end{array}$$

For the assumption of \(A\),

$$\begin{array}{c}8{\lambda }_{1}+4{\lambda }_{1}\rho -2{\lambda }_{1}A=2{\lambda }_{1}(4+2\rho -A)\le 0\\ -20A-2A\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }+8A\xi +8A\xi \rho \\ \begin{array}{c}=2A(-\sqrt{{(A-\xi )}^{2}-4\Theta -4\rho \Theta }-10+4\xi +4\xi \rho )\\ \le 0(32+12\Theta )(\rho +1)-2\xi \rho \sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }\le 0\\ 4(2+{\xi }^{2}){\rho }^{2}-12A\rho \le 0\end{array}\end{array}$$

Then, with the other negative components of the equation, we can obtain

$${(2\rho -A-\xi \rho +{\lambda }_{1}+4)}^{2}-{[A+\xi \rho +\sqrt{{A}^{2}-2A\xi +{\xi }^{2}-4\Theta -4\rho \Theta }]}^{2}<0$$

Then, \(({t}_{4}^{2}-{t}_{2}^{2}){(\rho +1)}^{2}>0\).

For \({t}_{2}\ge 0,{t}_{4}\ge 0\), thus, \({t}_{2}>{t}_{4}\).

Appendix 4

  1. 4.

    Proof \(\Delta S{W}_{\tau G}\ge 0\) and \(\Delta {\pi }_{\tau G}\ge 0\).

$$\begin{array}{c}\begin{array}{c}\Delta S{W}_{\tau G}=\Delta S{W}_{\tau }+S\\ =\frac{1-\rho }{8}(4A+4\xi -4\tau -8\Theta -6A\xi +4\xi \rho +2\xi \tau -3{\xi }^{2}\rho +3{\xi }^{2})-\frac{1-\rho }{8}(4A-6A\xi -8\Theta )\\ \begin{array}{c}=\frac{1-\rho }{8}(4\xi -4\tau +4\xi \rho +2\xi \tau -3{\xi }^{2}\rho +3{\xi }^{2})\\ =\frac{1-\rho }{8}[3{\xi }^{2}(1-\rho )+4\xi (1+\rho )+(2\xi -4)\tau ]\\ \Delta {\pi }_{\tau G}=\frac{\rho -1}{4}(4\Theta +2A\xi -2\xi \tau +{\xi }^{2}\rho -{\xi }^{2})+\frac{\rho -1}{4}(2A-3A\xi -4\Theta )\end{array}\end{array}\\ =\frac{\rho -1}{4}[4\Theta +2A\xi -2\xi \tau +{\xi }^{2}\rho -{\xi }^{2}+2A-3A\xi -4\Theta )]\\ =\frac{\rho -1}{4}[A(2-\xi )-2\xi \tau +{\xi }^{2}(\rho -1)]\end{array}$$

when \(\xi \ge 2\), \(\Delta S{W}_{\tau G}\ge 0\) and \(\Delta {\pi }_{\tau G}\ge 0\).

Appendix 5

  1. 5.

    Proof the existence of threshold \({t}^{*}={\tau }^{*}=r\), and solve \(r\).

\(\Delta S{W}_{t}\) is a general quadratic equation with an upwards parabolic curve. By solving the first-order condition \(\frac{\partial \Delta S{W}_{t}}{\partial t}=0\), we can find its minimum points (\(t=\frac{2\rho -\xi \rho +4-A}{1+\rho }\), \(\Delta S{W}_{t}^{\mathrm{min}}\)). Because \(\Delta S{W}_{\tau G}\) is a linear function, let \(\tau =\frac{2\rho -\xi \rho +4-A}{1+\rho }\) too, \(\Delta S{W}_{\tau G}\ge \Delta S{W}_{t}^{\mathrm{min}}\), then the threshold \({t}^{*}={\tau }^{*}\) must exist.

$$\begin{array}{c}\Delta S{W}_{\tau G}(\tau =\frac{2\rho -\xi \rho +4-A}{1+\rho })\\ =\frac{1-\rho }{8\rho +8}(4A+12\xi -8\rho -2A\xi +16\xi \rho +4\xi {\rho }^{2}-2{\xi }^{2}\rho +3{\xi }^{2}-3{\xi }^{2}{\rho }^{2}-16)\\ \begin{array}{c}\Delta S{W}_{t}(t=\frac{2\rho -\xi \rho +4-A}{1+\rho })=\frac{\rho -1}{8\rho +8}(16\rho -4\xi -12A+8\Theta +6A\xi -8A\rho -16\xi \rho +8\rho \Theta -8\xi {\rho }^{2}+\\ {A}^{2}-3{\xi }^{2}+4\rho {}^{2}+4{\xi }^{2}{\rho }^{2}+8A\xi \rho +16)\Delta S{W}_{\tau G}-\Delta S{W}_{t}^{\mathrm{min}}=\frac{1-\rho }{8\rho +8}[A(A+8\xi \rho -8\rho +4\xi -8)+\\ 8\rho +8\xi +8\Theta +8\rho \Theta -4\xi {\rho }^{2}-2{\xi }^{2}\rho +4{\rho }^{2}+{\xi }^{2}{\rho }^{2})]\ge 0\end{array}\end{array}$$

The threshold \({t}^{*}={\tau }^{*}\) exists.

To solve the threshold \({t}^{*}={\tau }^{*}=r\), let \(\Delta S{W}_{\tau G}(\tau =r)-\Delta S{W}_{t}(t=r)=0\)

That is, \(\frac{\rho -1}{8}(4A-4r-8\Theta -6A\xi +2Ar-2\xi r-4r\rho +{r}^{2}\rho +{r}^{2}+2\xi r\rho )=0\)

We can obtain

$$\begin{array}{c}{r}_{1}=\frac{1}{1+\rho }(\xi -A+2\rho -\xi \rho +{\lambda }_{3}+2)\\ {r}_{2}=\frac{1}{1+\rho }(\xi -A+2\rho -\xi \rho -{\lambda }_{3}+2)\\ {\lambda }_{3}=\sqrt{4\xi -8A+8\rho +8\Theta +4A\xi -8A\rho +8\rho \Theta -4\xi {\rho }^{2}-2{\xi }^{2}\rho +{A}^{2}+{\xi }^{2}+4{\rho }^{2}+{\xi }^{2}{\rho }^{2}+8A\xi \rho +4}\end{array}$$

For \({r}_{2}<0\), we focus on \({r}_{1}\).

If \({r}_{1}\ge 0\), \(\lambda \ge -\xi +A-2\rho +\xi \rho -2\)

For the assumption of \(\xi \ge 2\),

$${\lambda }^{2}-{(-\xi +A-2\rho +\xi \rho -2)}^{2}=2(\rho +1)(4\Theta -2A+3A\xi )\ge 0$$

\({r}_{1}\ge 0\) is proven, and for simplicity, we define \(r={r}_{1}\).

Appendix 6

  1. 6.

    Proof \(\frac{\partial r}{\partial \rho }\le 0\).

According to Eq. (34),

$$\frac{\partial r}{\partial\rho}=\frac{\lbrack4\rho-4A+4\Theta+4A\xi-4\xi\rho+\xi^2\rho-\xi^2+4+(2-\xi)\lambda_3\rbrack(1+\rho)-\lambda_3(\xi-A+2\rho-\xi\rho+\lambda_3+2)}{\lambda_3{(1+\rho)}^2}$$

Because the denominator is positive, we can judge \(\frac{\partial r}{\partial \rho }\ge 0\) or \(\frac{\partial r}{\partial \rho }\le 0\) by just calculating the numerator (defined as \(N\)),

$$N=[4\rho -4A+4\Theta +4A\xi -4\xi \rho +{\xi }^{2}\rho -{\xi }^{2}+4+(2-\xi ){\lambda }_{3}](1+\rho )-{\lambda }_{3}(\xi -A+2\rho -\xi \rho +{\lambda }_{3}+2)=4A+4A\rho -{A}^{2}-4A\xi \rho +A{\lambda }_{3}-2\xi {\lambda }_{3}-4\xi -4\Theta -4\xi \rho -4\rho \Theta +2{\xi }^{2}\rho -2{\xi }^{2}$$

If \(N\ge 0\), then \({\lambda }_{3}\) should satisfy the following condition:

$${\lambda }_{3}\ge \frac{-(4A+4A\rho -{A}^{2}-4A\xi \rho -4\xi -4\Theta -4\xi \rho -4\rho \Theta +2{\xi }^{2}\rho -2{\xi }^{2})}{A-2\xi }$$

According to Eq. (33),

$$\begin{array}{c}{{\lambda }_{3}}^{2}-{[\frac{-(4A+4A\rho -{A}^{2}-4A\xi \rho -4\xi -4\Theta -4\xi \rho -4\rho \Theta +2{\xi }^{2}\rho -2{\xi }^{2})}{A-2\xi }]}^{2}\\ =-\frac{{(1+\rho )}^{2}(4\Theta -2A+3A\xi )[A(5\xi -6)+8\xi +4\Theta -4{\xi }^{2}]}{{(A-2\xi )}^{2}}\end{array}$$

For \(\xi \ge 2\), \(4\Theta -2A+3A\xi \ge 0\), \(A(5\xi -6)+8\xi +4\Theta -4{\xi }^{2}\ge 0\), \(N\le 0\), \(\frac{\partial r}{\partial \rho }\le 0\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Jy., Chen, Zr. & Nie, Py. Discussion of the Tax Scheme for Cleaner Water Use. Water Conserv Sci Eng 7, 475–490 (2022). https://doi.org/10.1007/s41101-022-00156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-022-00156-x

Keywords

Navigation