Skip to main content
Log in

Hydraulic Performance of Polymer-Modified Bentonites for Development of Modern Geosynthetic Clay Liners: A Review

  • State of the Art/Practice Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Smectite-based geosynthetic clay liners (GCLs) are popularly employed as hydraulic barriers due to their low permeability and high swelling capacity. The exposure of GCLs to aggressive inorganic permeants is inevitable in the majority of field applications. GCLs exhibit inferior hydraulic properties and low swelling in these scenarios due to the concomitance of various physico–chemical interactions. To confront such aggressive environmental conditions, bentonites are modified chemically to enhance their resistance against increased permeability. Several polymer-modified clays have been developed with improved hydraulic properties; however, the efforts made to comprehend the overview of available literature are scarce. Limited studies have focussed on addressing the fundamental mechanism ascribing to their enhanced hydraulic performance. Given this, the present review article comprehends the insights into different types of modifications on smectite-based GCLs from their hydraulic performance perspective. Osmotic swell enhancement and pore clogging phenomena were found to be the primary mechanisms responsible for the improved hydraulic performance of polymer-treated GCLs. Further, the study reviewed the variation of permeability of various polymer-modified GCLs with the swell index based on the data published in the literature till date and proposed a relationship correlating them considering the wide range of permeants. The regression analysis results evidenced the suitability of the swell index as one of the index properties for ascertaining its hydraulic performance. Also, the study advocated the use of the dielectric constant of permeant for correlating the hydraulic behaviour of polymer-modified GCLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data used in the study are included in the submitted article.

References

  1. Jo HY, Katsumi T, Benson CH, Edil TB (2001) Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J Geotech Geoenviron Eng 127(7):557–567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557)

    Article  Google Scholar 

  2. Hornsey WP, Scheirs J, Gates WP, Bouazza A (2010) The impact of mining solutions/liquors on geosynthetics. Geotext Geomembr 28(2):191–198. https://doi.org/10.1016/j.geotexmem.2009.10.008

    Article  Google Scholar 

  3. Di Emidio G, Verástegui-Flores RD, Van Impe WF, Bezuijen A (2012) Recent development of treated clays for geosynthetic clay liners and barriers systems. In: Proceedings of the 5th European Geosynthetic Congress (Eurogeo 5), Valencia, Spain, 16(9):124–128

  4. Bouazza A, Gates WP (2014) Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynthet Int 21(2):151–167. https://doi.org/10.1680/gein.14.00006

    Article  Google Scholar 

  5. Chen J, Benson C, Edil T, Likos W (2018) Hydraulic conductivity of geosynthetic clay liners with sodium bentonite to coal combustion product leachates. J Geotech Geoenviron Eng 144(3):1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001844

    Article  Google Scholar 

  6. Shackelford CD, Benson CH, Katsumi T, Edil TB, Lin L (2000) Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext Geomembr 18(2–4):133–161. https://doi.org/10.1016/S0266-1144(99)00024-2

    Article  Google Scholar 

  7. Katsumi T, Ishimori H, Ogawa A, Yoshikawa K, Hanamoto K, Fukagawa R (2007) Hydraulic conductivity of nonprehydrated geosynthetic clay liners permeated with inorganic solutions and waste leachates. Soils Found 47(1):79–96. https://doi.org/10.3208/sandf.47.79

    Article  Google Scholar 

  8. Dutta J, Mishra AK, Das P (2018) Combined effect of inorganic salts and heavy metals on the engineering behaviour of compacted bentonites. Int J Geosynth Ground Eng 4(2):1–11. https://doi.org/10.1007/s40891-018-0134-x

    Article  Google Scholar 

  9. Chai JC, Shen SL (2018) Predicting swelling behavior of a Na+-bentonite used in GCLs. Int J Geosynth Ground Eng 4(1):1–6. https://doi.org/10.1007/s40891-018-0126-x

    Article  Google Scholar 

  10. Reddy PS, Mohanty B, Rao BH (2020) Influence of clay content and montmorillonite content on swelling behavior of expansive soils. Int J Geosynth Ground Eng 6(1):1–12. https://doi.org/10.1007/s40891-020-0186-6

    Article  Google Scholar 

  11. Shackelford CD, Lee JM (2003) The destructive role of diffusion on clay membrane behavior. Clays Clay Miner 51(2):186–196. https://doi.org/10.1346/CCMN.2003.0510209

    Article  Google Scholar 

  12. Jo H, Benson C, Shackelford C, Lee J, Edil T (2005) Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J Geotech Geoenviron Eng 131(4):405–417. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(405)

    Article  Google Scholar 

  13. Lee JM, Shackelford CD (2005) Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. J Geotech Geoenviron Eng 131(1):64–77. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(64)

    Article  Google Scholar 

  14. Lin LC, Benson CH (2000) Effect of wet-dry cycling on swelling and hydraulic conductivity of GCLs. J Geotech Geoenviron Eng 126(1):40–49. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(40)

    Article  Google Scholar 

  15. Mackey R, Olsta J (2004) Performance of geosynthetic clay liners used in two landfill closures in a coastal area of Florida. Advances in Geosynthetic Clay Liners Technology: 2nd Symposium, STP 1456, R. Mackey and K. von Maugeuge, eds., ASTM International, West Conshohocken, 53–71. https://doi.org/10.1520/STP12198S

  16. Benson CH, Jo HY, Abichou T (2004) Forensic analysis of excessive leakage from lagoons lined with a composite GCL. Geosynthet Int 11(3):242–252. https://doi.org/10.1680/gein.2004.11.3.242

    Article  Google Scholar 

  17. Benson CH, Thorstad PA, Jo HY, Rock SA (2007) Hydraulic performance of geosynthetic clay liners in a landfill final cover. J Geotech Geoenviron Eng 133(7):814–827. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(814)

    Article  Google Scholar 

  18. Meer SR, Benson CH (2007) Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers. J Geotech Geoenviron Eng 133(5):550–563. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(550)

    Article  Google Scholar 

  19. Scalia J IV, Benson CH (2010) Effect of permeant water on the hydraulic conductivity of exhumed GCLs. Geotech Test J 33(3):201–211. https://doi.org/10.1520/GTJ102609

    Article  Google Scholar 

  20. Ma Z, Gamage RP, Rathnaweera T, Kong L (2019) Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl Clay Sci 168:436–449. https://doi.org/10.1016/j.clay.2018.11.018

    Article  Google Scholar 

  21. Zhang T, Deng Y, Cui Y, Lan H, Zhang F, Zhang H (2019) Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition. Eng Geol 251:11–23. https://doi.org/10.1016/j.enggeo.2019.02.007

    Article  Google Scholar 

  22. Jadda K, Bag R (2020) Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration. Eng Geol 272:105637. https://doi.org/10.1016/j.enggeo.2020.105637

    Article  Google Scholar 

  23. Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of non-ionic organic organic-compounds between soil organic-matter and water. Environ Sci Technol 17(4):227–231. https://doi.org/10.1021/es00110a009

    Article  Google Scholar 

  24. Bate B, Burns SE (2010) Effect of total organic carbon content and structure on the electrokinetic behavior of organoclay suspensions. J Colloid Interface Sci 343(1):58–64. https://doi.org/10.1016/j.jcis.2009.11.009

    Article  Google Scholar 

  25. Gitipour S, Hosseinpour MA, Heidarzadeh N, Yousefi P, Fathollahi A (2015) Application of modified clays in geosynthetic clay liners for containment of petroleum contaminated sites. Int J Environ Res 9(1):317–322. https://doi.org/10.22059/IJER.2015.903

    Article  Google Scholar 

  26. Abbas A, Sallam AS, Usman AR, Al-Wabel MI (2017) Organoclay-based nanoparticles from montmorillonite and natural clay deposits: synthesis, characteristics, and application for MTBE removal. Appl Clay Sci 142:21–29. https://doi.org/10.1016/j.clay.2016.11.028

    Article  Google Scholar 

  27. Chanra J, Budianto E, Soegijono B (2019) Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. In IOP Conference Series: Materials Science and Engineering, Semarang, Indonesia, 509(1). https://doi.org/10.1088/1757-899X/509/1/012057

  28. Koh SM, Dixon JB (2001) Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl Clay Sci 18(3–4):111–122. https://doi.org/10.1016/S0169-1317(00)00040-5

    Article  Google Scholar 

  29. Sreedharan V, Sivapullaiah PV (2012) Evaluation of organically modified clays for geoenvironmental applications. In: Proceedings of GeoCongress: State of the Art and Practice in Geotechnical Engineering, Oakland, California, 1213–1222. https://doi.org/10.1061/9780784412121.125

  30. Gates WP, Nefiodovas A, Peter P (2004) Permeability of an organo-modified bentonite to ethanol-water solutions. Clays Clay Miner 52(2):192–203. https://doi.org/10.1346/CCMN.2004.0520205

    Article  Google Scholar 

  31. Gitipour S, Abolfazlzadeh M, Givehchi S (2008) Geo-environmental characteristics of modified and ordinary bentonitic soils exposed to MTBE. Int J Environ Studies 65(4):595–601. https://doi.org/10.1080/00207230701382016

    Article  Google Scholar 

  32. Richards S, Bouazza A (2007) Phenol adsorption in organo-modified basaltic clay and bentonite. Appl Clay Sci 37(1–2):133–142. https://doi.org/10.1016/j.clay.2006.11.006

    Article  Google Scholar 

  33. Lee S, Ören AH, Benson CH, Dovantzis K (2012) Organoclays as variably permeable reactive barrier media to manage NAPLs in ground water. J Geotech Geoenviron Eng 138(2):115–127. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000572

    Article  Google Scholar 

  34. Benson CH, Jo HY, Musso T (2015) Hydraulic conductivity of organoclay and organoclay-sand mixtures to fuels and organic liquids. J Geotech Geoenviron Eng 141(2):04014094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001194

    Article  Google Scholar 

  35. Zhao Q, Choo H, Bhatt A, Burns SE, Bate B (2017) Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Appl Clay Sci 142:2–20. https://doi.org/10.1016/j.clay.2016.11.024

    Article  Google Scholar 

  36. Jemima WS, Magesan P, Chiranjeevi P, Umapathy MJ (2019) Sorption properties of organo modified montmorillonite clay for the reclamation of chromium (VI) from waste water. SILICON 11(2):925–933. https://doi.org/10.1007/s12633-018-9887-z

    Article  Google Scholar 

  37. Headley JV, Boldt-Leppin BE, Haug MD, Peng J (2001) Determination of diffusion and adsorption coefficients for volatile organics in an organophilic clay-sand-bentonite liner. Can Geotech J 38(4):809–817. https://doi.org/10.1139/t01-017

    Article  Google Scholar 

  38. Lake CB, Rowe RK (2005) A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. Geotext Geomembr 23(4):323–347. https://doi.org/10.1016/j.geotexmem.2005.01.001

    Article  Google Scholar 

  39. Lo IM, Yang X (2001) Use of organoclay as secondary containment for gasoline storage tanks. J Environ Eng 127(2):154–161. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:2(154)

    Article  Google Scholar 

  40. Lorenzetti RJ, Bartelt-Hunt SL, Burns SE, Smith JA (2005) Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotext Geomembr 23(5):385–400. https://doi.org/10.1016/j.geotexmem.2005.02.002

    Article  Google Scholar 

  41. Kondo M (1996) Method of activation of clay and activated clay. US Patent Number 5,573,583. US Patent and Trademark Office. https://patents.google.com/patent/US5573583A/en

  42. Katsumi T, Ogawa A, Fukagawa R (2004) Effect of chemical solutions on hydraulic barrier performance of clay geosynthetic barriers. In: Proceedings of the 3rd European Conference on Geosynthetics, Munich, Germany, 701–706

  43. Katsumi T, Ishimori H, Onikata M, Fukagawa R (2008) Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext Geomembr 26(1):14–30. https://doi.org/10.1016/j.geotexmem.2007.04.003

    Article  Google Scholar 

  44. Gates WP, Shaheen U, Turney TW, Patti AF (2016) Cyclic carbonate–sodium smectite intercalates. Appl Clay Sci 124:94–101. https://doi.org/10.1016/j.clay.2016.02.005

    Article  Google Scholar 

  45. Mazzieri F, Van Impe PO, Di Emidio G (2005) Chemico-osmotic behaviour of modified “Multiswellable” bentonite. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 16(4):2297–2300. https://doi.org/10.3233/978-1-61499-656-9-2297

  46. Onikata M, Kondo M, Hayashi N, Yamanaka S (1999) Complex formation of cation-exchanged montmorillonites with propylene carbonate: Osmotic swelling in aqueous electrolyte solutions. Clays Clay Miner 47(5):672–677. https://doi.org/10.1346/CCMN.1999.0470514

    Article  Google Scholar 

  47. Mazzieri F, Pasqualini E (2006) Evaluating the permeability of an organically modified bentonite to natural seawater. In 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics: Proceedings of the ISSMGE’s fifth international congress, Cardiff, United Kingdom, Thomas Telford Publishing, 749–756

  48. Fehervari A, Gates WP, Patti AF, Turney TW, Bouazza A, Rowe RK (2016) Potential hydraulic barrier performance of cyclic organic carbonate modified bentonite complexes against hyper-salinity. Geotext Geomembr 44(5):748–760. https://doi.org/10.1016/j.geotexmem.2016.06.002

    Article  Google Scholar 

  49. Katsumi T, Fukagawa R (2005) Factors affecting chemical compatibility and barrier performance of GCLs. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Millpress Science Publishers, Rotterdam, Netherlands, 2285–2288. https://doi.org/10.3233/978-1-61499-656-9-2285

  50. Mazzieri F, Di Emidio G, Van Impe PO (2010) Diffusion of calcium chloride in a modified bentonite: impact on osmotic efficiency and hydraulic conductivity. Clays Clay Miner 58(3):351–363. https://doi.org/10.1346/CCMN.2010.0580306

    Article  Google Scholar 

  51. Ruehrwein RA, Ward DW (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73(6):485–492. https://doi.org/10.1097/00010694-195206000-00007

    Article  Google Scholar 

  52. Di Emidio G (2010) Hydraulic conductivity and chemico-osmotic performance of polymer treated clays. Ph.D. Dissertation, University of Gent, Belgium

  53. Michaels AS, Morelos O (1955) Polyelectrolyte adsorption by kaolinite. Ind Eng Chem 47(9):1801–1809. https://doi.org/10.1021/ie50549a029

    Article  Google Scholar 

  54. Deng Y, Dixon J, White G (2006) Bonding between polyacrylamide and smectite. Colloids Surf 281(1):82–91. https://doi.org/10.1016/j.colsurfa.2006.02.030

    Article  Google Scholar 

  55. Tate KR, Theng BKG (1980) Organic matter and its interactions with inorganic soil constituents In: Soils with variable charge, Soil Bureau Department of Scientific and Industrial Research, New Zealand, 225–249

  56. Heller H, Keren R (2003) Anionic polyacrylamide polymer adsorption by pyrophyllite and montmorillonite. Clays Clay Miner 51(3):334–339. https://doi.org/10.1346/CCMN.2003.0510310

    Article  Google Scholar 

  57. Qiu H, Yu J (2008) Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: preparation and water absorbency. J Appl Polym Sci 107(1):118–123. https://doi.org/10.1002/app.26261

    Article  Google Scholar 

  58. Di Emidio G, Van Impe WF, Flores RV (2011) Advances in geosynthetic clay liners: polymer enhanced clays. In: Proceedings of the Geo-Frontiers - Advances in Geotechnical Engineering, Dallas, Texas, 1931–1940. https://doi.org/10.1061/41165(397)197

  59. Di Emidio G, Mazzieri F, Verastegui-Flores RD, Van Impe W, Bezuijen A (2015) Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynthet Int 22(1):125–137. https://doi.org/10.1680/gein.14.00036

    Article  Google Scholar 

  60. De Camillis M, Di Emidio G, Bezuijen A, Flores DV, Van Stappen J, Cnudde V (2017) Effect of wet-dry cycles on polymer treated bentonite in seawater: swelling ability, hydraulic conductivity and crack analysis. Appl Clay Sci 142:52–59. https://doi.org/10.1016/j.clay.2016.11.011

    Article  Google Scholar 

  61. De Camillis M, Di Emidio G, Bezuijen A, Flores DV (2016) Wet and dry effects on the hydraulic conductivity of a polymer treated GCL prototype. In: Proceedings of the Geo-Chicago, Chicago, US, 518–527. https://doi.org/10.1061/9780784480144.051

  62. Flynn BN, Carter GC (1998) Waterproofing material and method of fabrication thereof. US Patent Number 6,537,676. US Patent and Trademark Office. https://patents.google.com/patent/US6537676

  63. Malusis MA, Daniyarov AS (2016) Membrane efficiency and diffusive tortuosity of a dense prehydrated geosynthetic clay liner. Geotext Geomembr 44(5):719–730. https://doi.org/10.1016/j.geotexmem.2016.05.006

    Article  Google Scholar 

  64. Kolstad DC, Benson CH, Edil TB, Jo HY (2004) Hydraulic conductivity of a dense prehydrated GCL permeated with aggressive inorganic solutions. Geosynthet Int 11(3):233–241. https://doi.org/10.1680/gein.2004.11.3.233

    Article  Google Scholar 

  65. Mazzieri F, Emidio GD (2015) Hydraulic conductivity of a dense prehydrated geosynthetic clay liner. Geosynthet Int 22(1):138–148. https://doi.org/10.1680/gein.14.00037

    Article  Google Scholar 

  66. Schroeder C, Monjoie A, Illing P, Dosquet D, Thorez J (2001) Testing a factory- prehydrated GCL under several conditions. In: Proceedings of Sardinia 2001: 8th International Waste Management and Landfill Symposium, Cagliari, Italy, 1:187–196

  67. Di Emidio G, Mazzieri F, Van Impe W (2008) Hydraulic conductivity of a dense prehydrated GCL: impact of free swell and swelling pressure. In: Proceedings of the 4th European Geosynthetics Conference, EuroGeo4, Edinburgh, UK

  68. Mazzieri F, Di Emidio G, Fratalocchi E, Di Sante M, Pasqualini E (2013) Permeation of two GCLs with an acidic metal-rich synthetic leachate. Geotext Geomembr 40:1–11. https://doi.org/10.1016/j.geotexmem.2013.07.011

    Article  Google Scholar 

  69. Mazzieri F (2011) Impact of desiccation and cation exchange on the hydraulic conductivity of factory-prehydrated GCLs. In: Proceedings of the Geo-Frontiers —Advances in Geotechnical Engineering, Dallas, Texas, 976–985. https://doi.org/10.1061/41165(397)100

  70. Mazzieri F, Pasqualini E (2008) Effect of dry/wet cycles and cation exchange on the permeability of a dense prehydrated GCL. In: Proceedings of the Fourth International Conference on Geosynthetics-Eurogeo4, Edinburgh, UK

  71. Mazzieri F, Di Emidio G, Pasqualini E (2017) Effect of wet-and-dry ageing in seawater on the swelling properties and hydraulic conductivity of two amended bentonites. Appl Clay Sci 142:40–51. https://doi.org/10.1016/j.clay.2016.10.031

    Article  Google Scholar 

  72. Razakamanantsoa A, Djeran-Maigre I, Barast G (2016) Characterisation of bentonite polymer for bottom liner use. Environ Geotech 3(1):28–35. https://doi.org/10.1680/jenge.13.00095

    Article  Google Scholar 

  73. McKelvey JA (1997) Geosynthetic Clay Liners in Alkaline Environments. Testing and Acceptance Criteria for Geosynthetic Clay Liners, ASTM STP 1308. American Society for Testing and Materials, West Conshohocken, Pennsylvania, 139–149. https://doi.org/10.1520/STP11799S

  74. Benson CH, Ören AH, Gates WP (2010) Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotext Geomembr 28(2):206–218. https://doi.org/10.1016/j.geotexmem.2009.10.002

    Article  Google Scholar 

  75. Athanassopoulos C, Benson C, Donovan M, Chen J (2015) Hydraulic conductivity of a polymer-modified GCL permeated with high-pH solutions. In: Proceedings of the Geosynthetic Conference, Industrial Fabrics Association International, Portland, Oregon, USA, 181–186

  76. Salihoglu H, Chen JN, Likos WJ, Benson CH (2016) Hydraulic conductivity of bentonite-polymer geosynthetic clay liners in coal combustion product leachates. In: Proceedings of the Geo-Chicago, Chicago, US, 438–447. https://doi.org/10.1061/9780784480144.043

  77. Tian K, Benson CH, Likos WJ (2016) Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate. J Geotech Geoenviron Eng 142(8):04016037. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001495

    Article  Google Scholar 

  78. Ashmawy AK, El-Hajji D, Sotelo N, Muhammad N (2002) Hydraulic performance of untreated and polymer-treated bentonite in inorganic landfill leachates. Clays Clay Miner 50(5):546–552. https://doi.org/10.1346/000986002320679288

    Article  Google Scholar 

  79. Shackelford CD, Sevick GW, Eykholt GR (2010) Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotext Geomembr 28(2):149–162. https://doi.org/10.1016/j.geotexmem.2009.10.005

    Article  Google Scholar 

  80. Chen J, Salihoglu H, Benson CH, Likos WJ, Edil TB (2019) Hydraulic conductivity of bentonite - polymer composite geosynthetic clay liners permeated with coal combustion product leachates. J Geotech Geoenviron Eng 145(9):04019038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002105

    Article  Google Scholar 

  81. Trauger R, Darlington J (2000) Next-generation geosynthetic clay liners for improved durability and performance. In: Proceedings of 14th GRI Conference, Geosynthetic Institute, Folsom, PA, USA, 255–267

  82. Scalia J, Benson CH, Edil TB, Bohnhoff GL, Shackelford CD (2011) Geosynthetic clay liners containing bentonite polymer nanocomposite. In: Proceedings of the Geo-Frontiers: Advances in Geotechnical Engineering, Dallas, Texas, 2001–2009. https://doi.org/10.1061/41165(397)204

  83. Piqué TM, Manzanal D, Codevilla M, Orlandi S (2019) Polymer-enhanced soil mixtures for potential use as covers or liners in landfill systems. Environ Geotech 8(7):467–479. https://doi.org/10.1680/jenge.18.00174

    Article  Google Scholar 

  84. Buchholz F, Graham A (1998) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  85. Scalia J IV, Benson CH, Bohnhoff GL, Edil TB, Shackelford CD (2014) Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions. J Geotech Geoenviron Eng 140(3):04013025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040

    Article  Google Scholar 

  86. Ören AH, Öztürk M, Özdamar Kul T, Nart Z (2019) Barrier performance of geosynthetic clay liners to copper (II) chloride solutions. Environ Geotech 7(7):491–500. https://doi.org/10.1680/jenge.18.00024

    Article  Google Scholar 

  87. Scalia IV J, Benson CH (2014) Barrier performance of bentonite-polyacrylate nanocomposite to artificial ocean water. In: Proceedings of the Geo-Congress: Geo-characterization and Modeling for Sustainability, Atlanta, US, 1826–1835. https://doi.org/10.1061/9780784413272.179

  88. Tian K, Benson CH (2019) Containing bauxite liquor using bentonite-polymer composite geosynthetic clay liners. In: Zhan L, Chen Y, Bouazza A. (eds) In: Proceedings of the 8th International Congress on Environmental Geotechnics, Environmental Science and Engineering, 2, Springer, Singapore, 672–678. https://doi.org/10.1007/978-981-13-2224-2_83

  89. Bohnhoff GL, Shackelford CD (2013) Improving membrane performance via bentonite polymer nanocomposite. Appl Clay Sci 86:83–98. https://doi.org/10.1016/j.clay.2013.09.017

    Article  Google Scholar 

  90. Bohnhoff GL, Shackelford CD (2014) Hydraulic conductivity of polymerized bentonite-amended backfills. J Geotech Geoenviron Eng 140(3):04013028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001034

    Article  Google Scholar 

  91. Bohnhoff GL, Shackelford CD (2015) Salt diffusion through a bentonite-polymer composite. Clays Clay Miner 63(3):145–162. https://doi.org/10.1346/CCMN.2015.0630301

    Article  Google Scholar 

  92. Scalia IV J, Benson CH (2016) Evaluation of Na-bentonite-polyacrylate mixtures to enhance the chemical resistance of geosynthetic clay liners. In: Proceedings of the Geo-Chicago, Chicago, US, 388–397. https://doi.org/10.1061/9780784480144.038

  93. Lieske W, Steudel A, Di Emidio G, Baille W (2020) Influence of constitution and mixture treatment of cationic polymers on modified bentonite. Environ Geotech 40:1–9. https://doi.org/10.1680/jenge.19.00096 (In press)

    Article  Google Scholar 

  94. Tian K, Likos WJ, Benson CH (2019) Polymer elution and hydraulic conductivity of bentonite—polymer composite geosynthetic clay liners. J Geotech Geoenviron Eng 145(10):04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097

    Article  Google Scholar 

  95. Scalia J IV, Benson CH (2017) Polymer fouling and hydraulic conductivity of mixtures of sodium bentonite and a bentonite-polymer composite. J Geotech Geoenviron Eng 143(4):04016112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001628

    Article  Google Scholar 

  96. Tian K, Likos WJ, Benson CH (2016) Pore-scale imaging of polymer-modified bentonite in saline solutions. In: Proceedings of the Geo-Chicago, Chicago, US, 468–477. https://doi.org/10.1061/9780784480144.046

  97. Prongmanee N, Chai JC, Shrestha S (2018) Effect of cations on consolidation and permeability of polymerized bentonite. Lowland Tech Int 20(3):297–304

    Google Scholar 

  98. Prongmanee N, Chai JC (2019) Performance of geosynthetic clay liner with polymerized bentonite in highly acidic or alkaline solutions. Int J Geosynth Ground Eng 5(3):26. https://doi.org/10.1007/s40891-019-0177-7

    Article  Google Scholar 

  99. Yu C, Liao R, Cai X, Yu X (2019) Sodium polyacrylate modification method to improve the permeant performance of bentonite in chemical resistance. J clean prod 213:242–250. https://doi.org/10.1016/j.jclepro.2018.12.179

    Article  Google Scholar 

  100. Chai JC, Prongmanee N (2020) Barrier properties of a geosynthetic clay liner using polymerized sodium bentonite. Geotext Geomembr 48(3):392–399. https://doi.org/10.1016/j.geotexmem.2019.12.010

    Article  Google Scholar 

  101. ASTM D5890 (2019) Standard test method for swell index of clay mineral component of geosynthetic clay liners ASTM D5890. ASTM, West Conshohocken. https://doi.org/10.1520/D5890-19

    Book  Google Scholar 

  102. Liu Y, Bouazza A, Gates WP, Rowe RK (2015) Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions. Geotext Geomembr 43(1):14–23. https://doi.org/10.1016/j.geotexmem.2014.11.004

    Article  Google Scholar 

  103. Wireko C, Zainab B, Tian K, Abichou T (2020) Effect of specimen preparation on the swell index of bentonite-polymer GCLs. Geotext Geomembr 48(6):875–885. https://doi.org/10.1016/j.geotexmem.2020.06.006

    Article  Google Scholar 

  104. Goodarzi AR, Fateh SN, Shekary H (2016) Impact of organic pollutants on the macro and microstructure responses of Na-bentonite. Appl Clay Sci 121:17–28. https://doi.org/10.1016/j.clay.2015.12.023

    Article  Google Scholar 

  105. Mortezaei H, Karimpour-Fard M (2017) Variation of the hydraulic conductivity of clayey soils in exposure to organic permeants. Civil Eng J 3(11):1036. https://doi.org/10.28991/cej-030936

    Article  Google Scholar 

  106. Katsumi T, Onikata M, Hasegawa S, Lin L, Kondo M, Kamon M (2001) Chemical compatibility of modified bentonite permeated with inorganic solutions. In: Proceedings of the 3rd Conference on Geoenvironmental Engineering - Geoenvironmental Impact Management, Edinburgh, London, 419–424

  107. Mollerup JM, Breil MP (2015) Modeling the permittivity of electrolyte solutions. J AICE 61(9):2854–2860. https://doi.org/10.1002/aic.14799

    Article  Google Scholar 

  108. Tian K, Benson CH, Likos WJ (2017) Effect of an anion ratio on the hydraulic conductivity of a bentonite-polymer geosynthetic clay liner. In: Proceedings of Geotechnical Frontiers, Orlando, USA, 180–189

  109. Li Q, Chen J, Benson CH, Peng D (2021) Hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners permeated with bauxite liquor. Geotext Geomembr 49(2):420–429. https://doi.org/10.1016/j.geotexmem.2020.10.015

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Prime Minister’s Research Fellows (PMRF) Scheme. The first author would like to acknowledge the financial support from the Ministry of Human Resource Development (MHRD), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Literature review, data curation, formal analysis, and original draft preparation were performed by SK. DNA had validated, visualized, critically reviewed, analysed, and edited.

Corresponding author

Correspondence to Dali Naidu Arnepalli.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interest concerning the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthana, S., Arnepalli, D.N. Hydraulic Performance of Polymer-Modified Bentonites for Development of Modern Geosynthetic Clay Liners: A Review. Int. J. of Geosynth. and Ground Eng. 8, 24 (2022). https://doi.org/10.1007/s40891-022-00368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-022-00368-0

Keywords

Navigation