Skip to main content
Log in

Performance of Geosynthetic Clay Liner with Polymerized Bentonite in Highly Acidic or Alkaline Solutions

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

The hydraulic behavior of a polymerized bentonite (PB) and the self-healing capacity of a geosynthetic clay liner (GCL) using the PB as core material (PB-GCL) in corrosive solutions (pH ranging from 1 to 13) were investigated through a series of laboratory tests [i.e., free swelling index, swelling pressure, permeability (k) (consolidation), and leakage rate tests]. The test results indicate that the PB had a higher swelling capacity than that of the corresponding untreated bentonite (UB). Particularly, for pH greater than 12.5 solutions, PB had a higher free swelling index (FSI), higher swelling pressure, and lower k value than that of the PB with deionized water. PB-GCL with a damage hole had lower permittivity for the damage hole (ψhole) and a higher self-healing capacity than that of the GCL using UB as the core (UB-GCL). Based on the test results, it is suggested that PB-GCL can be used as an effective barrier material to contain acidic and alkaline liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ψ hole :

Permittivity of damage hole (s−1)

α :

Self-healing ratio (dimensionless)

Q ud :

Steady flow rate of the undamaged sample (m3/s)

Q d :

Steady flow rate of the damaged sample (m3/s)

A total :

Total specimen area (m2)

A hole :

Damaged area (m2)

A unhealed :

Unhealed area (m2)

A 1 :

Healed area (m2)

Δh :

Water head difference (mm)

References

  1. EPA (United States Environmental Protection Agency) (1980) Corrosivity background document and FRN. Office of Solid Waste and Emergency Response, Washington DC

    Google Scholar 

  2. España JS (2007) The behavior of iron and aluminum in acid mine drainage: speciation, mineralogy, and environmental significance. In: Thermodynamics, solubility and environmental issues. Elsevier, Amsterdam, pp 137–150

    Chapter  Google Scholar 

  3. Ruhl JL, Daniel DE (1997) Geosynthetic clay liners permeated with chemical solutions and leachates. J Geotech Geoenviron Eng ASCE 123(4):369–381

    Article  Google Scholar 

  4. Benson CH, Ören AH, Gates WP (2010) Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotext Geomembr 28(2):206–218

    Article  Google Scholar 

  5. Burke IT, Mortimer RJ, Palaniyandi S, Whittleston RA, Lockwood CL, Ashley DJ, Stewart DI (2012) Biogeochemical reduction processes in a hyper-alkaline leachate affected soil profile. Geomicrobiol J 29(9):769–779

    Article  Google Scholar 

  6. Manahan SE (2017) Environmental chemistry. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  7. Valor A, Caleyo F, Alfonso L, Rivas D, Hallen JM (2007) Stochastic modelling of pitting corrosion: a new model for initiation and growth of multiple corrosion pits. Corros Sci 49(2):559–579

    Article  Google Scholar 

  8. Yajima A, Wang H, Liang RY, Castaneda H (2015) A clustering based method to evaluate soil corrosivity for pipeline external integrity management. Int J Press Vessels Pip 126:37–47

    Article  Google Scholar 

  9. Koch GH, Brongers MP, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States, No. FHWA-RD-01-156, Houston

  10. Sari K, Chai JC (2013) Self-healing capacity of geosynthetic clay liners and influencing factors. Geotext Geomembr 41:64–71

    Article  Google Scholar 

  11. Gandhi GN, Sivakumar Babu GL, Santhosh GL (2016) Evaluation of engineered barrier system for hazardous waste disposal—a case study. Jpn Geotech Soc Spec Publ 2(1):54–61

    Google Scholar 

  12. Didier G, Norotte V (1998) Mise en oeuvre des Géosynthétiques bentonitiques. In: Proceeding of Géo-Bento, Etanchéité par géosynthétiques bentonitiques: état de l’art, Paris, vol 98, pp 45–63

  13. Fox PJ, Triplett EJ, Kim RH, Olsta JT (1998) Field study of installation damage for geosynthetic clay liners. Geosynth Int 5(5):491–520

    Article  Google Scholar 

  14. Rowe RK, Ashe LE, Take WA, Brachman RWI (2014) Factors affecting the down-slope erosion of bentonite in a GCL. Geotext Geomembr 42(5):445–456

    Article  Google Scholar 

  15. Sivakumar Babu GL, Sporer H, Zanzinger H, Gartung E (2001) Self-healing properties of geosynthetic clay liners. Geosynth Int 8(5):461–470

    Article  Google Scholar 

  16. Mazzieri F, Pasqualini E (2000) Permeability of damaged geosynthetic clay liners. Geosynth Int 7(2):101–118

    Article  Google Scholar 

  17. Chai JC, Sari K, Hino T (2013) Effect of type of leachate on self-healing capacity of geosynthetic clay liner. Geosynth Eng J 28:93–98

    Article  Google Scholar 

  18. Elhajji D, Ashmawy AK, Darlington J, Sotelo N (2001) Effect of inorganic leachate on polymer treated GCL material. In: Proc., the geosynthetics 2001 conference, Portland, pp 663–670

  19. Razakamanantsoa AR, Barast G, Djeran-Maigre I, Didier G, Couradin A (2008) Hydraulic performance of bentonite soil mixture reinforced by polymer in contact of different fluids. In: Proc., Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Nantes, pp 133–140

  20. Bohnhoff GL, Shackelford CD (2013) Improving membrane performance via bentonite polymer nanocomposite. Appl Clay Sci 86:83–98

    Article  Google Scholar 

  21. Di Emidio G, Mazzieri F, Verastegui-Flores RD, Van Impe W, Bezuijen A (2015) Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynth Int 22(1):125–137

    Article  Google Scholar 

  22. Kong DJ, Wu HN, Chai JC, Arulrajah A (2017) State-of-the-art review of geosynthetic clay liners. Sustainability 9(11):2110

    Article  Google Scholar 

  23. Scalia J, Benson CH, Bohnhoff GL, Edil TB, Shackelford CD (2014) Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions. J Geotech Geoenviron Eng ASCE 140(3):04013025

    Article  Google Scholar 

  24. Scalia J, Benson CH, Edil TB, Bohnhoff GL, Shackelford CD (2011) Geosynthetic clay liners containing bentonite polymer nanocomposite. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering, pp 2001–2009

  25. Özhan HO (2017) Effects of adding anionic polymer to GCLs treated with chemical solutions. In: Proceedings of 19th ICSMGE, Seoul, pp 955–958

  26. Prongmanee N, Chai JC, Shen S (2018) Hydraulic properties of polymerized bentonites. J Mater Civ Eng ASCE 30(10):04018247

    Article  Google Scholar 

  27. Gooch JW (ed) (2010) Encyclopedic dictionary of polymers, vol 1. Springer Science & Business Media, Berlin

    Google Scholar 

  28. Scalia J, Bohnhoff GL, Shackelford CD, Benson CH, Sample-Lord KM, Malusis MA, Likos WJ (2018) Enhanced bentonites for containment of inorganic waste leachates by GCLs. Geosynth Int 25(4):392–411

    Article  Google Scholar 

  29. Jo HY, Katsum T, Benson CH, Edil TB (2001) Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J Geotech Geoenviron Eng ASCE 127(7):557–567

    Article  Google Scholar 

  30. Naka A, Flores G, Katsumi T, Sakanakura H (2016) Factors influencing hydraulic conductivity and metal retention capacity of geosynthetic clay liners exposed to acid rock drainage. Jpn Geotech Soc Spec Publ 2(69):2379–2384

    Google Scholar 

  31. Chai JC, Shen SL (2018) Predicting swelling behavior of a Na+-bentonite used in GCLs. Int J Geosynth Ground Eng 4(1):9

    Article  Google Scholar 

  32. Prongmanee N, Chai JC (2017) Effect of shape of damage hole on self-healing capacity of GCL. Geosynth Eng J 32:59–64

    Article  Google Scholar 

  33. Norotte V, Didier G, Guyonnet D, Gaucher E (2004) Advances in geosynthetic clay liner technology. In: Mackey, von Maubeuge (eds) Proceedings of 2nd symposium, ASTM STP 1456. ASTM International, West Conshohocken, pp 41–52

  34. Rowe RK, Mukunoki T, Bathurst RJ (2006) Compatibility with jet A-1 of a GCL subjected to freeze–thaw cycles. J Geotech Geoenviron Eng 132(12):1526–1537

    Article  Google Scholar 

  35. Taylor D (1948) Fundamentals of soil mechanics. Chapman and Hall Limited, New York

    Book  Google Scholar 

  36. Bohnhoff GL, Shackelford CD (2014) Consolidation behavior of polymerized bentonite-amended backfills. J Geotech Geoenviron Eng 140(5):04013055

    Article  Google Scholar 

  37. Quang ND, Chai JC (2015) Permeability of lime-and cement-treated clayey soils. Can Geotech J 52(9):1221–1227

    Article  Google Scholar 

  38. Prechthai T, Visvanathan C, Cheimchaisri C (2006) RDF production potential of municipal solid waste. In: Proceedings of 2nd joint international conference on sustainable energy and environment, pp 21–23

  39. Adair A, Klinpituksa P, Kaesaman A (2017) Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities. In: AIP conference proceedings, vol 1868, no 1. AIP Publishing, pp 020012-1–020012-7

  40. Du YJ, Yang YL, Fan RD, Wang F (2016) Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills. KSCE J Civ Eng 20(2):670–678

    Article  Google Scholar 

  41. Nakano A, Ohtsubo M, Li L, Higashi T, Kanayama M (2007) Role of carbonate for Pb sorption in some bentonites. Trans Jpn Soc Irrig Drain Rural Eng 251:491–499

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants-in-Aid for Scientific Research (KAKENHI) of the Japan Society for the Promotion of Science (JSPS) under Grant No. 17K06558, and the National Natural Science Foundation of China (NSFC) under Grant No. 51578333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chun Chai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prongmanee, N., Chai, JC. Performance of Geosynthetic Clay Liner with Polymerized Bentonite in Highly Acidic or Alkaline Solutions. Int. J. of Geosynth. and Ground Eng. 5, 26 (2019). https://doi.org/10.1007/s40891-019-0177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-019-0177-7

Keywords

Navigation