Skip to main content
Log in

Assessment of various isogeometric contact surface refinement strategies

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Since its inception, isogeometric analysis (IGA) has shown significant advantages over Lagrange polynomials-based finite element analysis (FEA), especially for contact problems. IGA often uses C\(^\text {1}\)-continuous non-uniform rational B-splines (NURBS) as basis functions, providing a smooth description of kinematic variables across the contact interface. This leads to increased accuracy and stability in the numerical solutions. However, from the existing literature on isogeometric contact analysis, it is not yet clear what interpolation order and continuity of NURBS one should employ to accurately capture the distribution of contact forces across the contact interface. The present work aims to fill this gap and provides a comparative assessment of different NURBS-based standard (conventional) refinement strategies for contact problems within the IGA framework. A recently proposed refinement strategy, known as the varying-order (VO) based NURBS discretization, has demonstrated its capability to refine geometry through the implementation of order elevation in a controlled manner. However, a detailed investigation that directly compares the VO based NURBS discretization with the standard NURBS discretization has not yet been carried out. Therefore, a thorough study of the VO based discretization strategy is also conducted, evaluating its effectiveness in comparison with the standard discretization strategy for contact problems. For this, a few examples on contact problems are solved using an in-house MATLAB® code. The solution to these examples shows that quadratic order standard NURBS discretization is sufficient to achieve the desired level of solution accuracy just by increasing the mesh size. It is further demonstrated that VO based discretization can achieve much higher accuracy than standard discretization, even with a coarse mesh, by generating additional degrees of freedom in the contact boundary layer. In addition, VO based discretization makes considerable savings in analysis time to achieve the same accuracy level as standard discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. In the current simulation, an Intel® Xeon® CPU E5-2630 v4 operating at 2.20GHz, featuring 10 cores, 32GB 2400MHz DDR4 RAM, and 25MB cache is utilized.

  2. In the current simulation, an Intel® Xeon® CPU E5-2640 v4 operating at 2.40GHz, featuring 10 cores, 64GB 2133MHz DDR4 RAM, and 25MB cache is utilized.

  3. In the current simulation, an Intel® Xeon® CPU E5-2650 v2 operating at 2.60 GHz, featuring 8 cores, 32GB 1866 MHz DDR3 RAM, and 20 MB cache is utilized.

References

  1. Agrawal V, Gautam SS (2019) Higher order Hermite enriched contact finite elements for adhesive contact problems. Int J Mater Struct Integr 13(1–3):16–31. https://doi.org/10.1504/IJMSI.2019.100380

    Article  Google Scholar 

  2. Agrawal V, Gautam SS (2019) IGA: a simplified introduction and implementation details for finite element users. J Inst Eng Ser C 100(3):561–585. https://doi.org/10.1007/s40032-018-0462-6

    Article  Google Scholar 

  3. Agrawal V, Gautam SS (2019) Investigation of contact pressure oscillations with different segment-to-segment based isogeometric contact formulations. In: Wahab MA (ed) Lect. Notes Mech Eng Springer, Singapore, pp 90–103. https://doi.org/10.1007/978-981-13-2273-0_8

  4. Agrawal V, Gautam SS (2020) Investigating the influence of higher-order NURBS discretization on contact force oscillation for large deformation contact using isogeometric analysis. In: Voruganti H, Kumar K, Krishna P, Jin X (eds) Lect. Notes Mech Eng Springer, Singapore, pp 343–350. https://doi.org/10.1007/978-981-15-1201-8_39

  5. Agrawal V, Gautam SS (2020) Varying-order NURBS discretization: an accurate and efficient method for isogeometric analysis of large deformation contact problems. Comput Methods Appl Mech Eng 367:113125. https://doi.org/10.1016/j.cma.2020.113125

    Article  MathSciNet  Google Scholar 

  6. Agrawal V, Gautam SS (2021) NURBS-based isogeometric analysis for stable and accurate peeling computations. Sādhanā 46:3. https://doi.org/10.1007/S12046-020-01513-Z

    Article  MathSciNet  Google Scholar 

  7. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott M, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263. https://doi.org/10.1016/j.cma.2009.02.036

    Article  MathSciNet  Google Scholar 

  8. Bidkhori E, Hassani B (2022) A parametric knot adaptation approach to isogeometric analysis of contact problems. Eng Comput 38:609–630. https://doi.org/10.1007/S00366-020-01073-0

    Article  Google Scholar 

  9. Bonet J, Wood RD (2008) Nonlinear Continuum Mechanics for Finite Element Analysis, 2\(^\text{nd}\) edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511755446

  10. Campos LT, Oden JT, Kikuchi N (1982) A numerical analysis of a class of contact problems with friction in elastostatics. Comput Methods Appl Mech Eng 34(1–3):821–845. https://doi.org/10.1016/0045-7825(82)90090-1

    Article  MathSciNet  Google Scholar 

  11. Chan SK, Tuba IS (1971) A finite element method for contact problems of solid bodies–Part I. Theory and validation. Int J Mech Sci 13(7):615–625. https://doi.org/10.1016/0020-7403(71)90032-4

    Article  Google Scholar 

  12. Chandrasekaran N, Haisler WE, Goforth RE (1987) Finite element analysis of Hertz contact problem with friction. Finite Elem Anal Des 3(1):39–56. https://doi.org/10.1016/0168-874X(87)90032-1

    Article  Google Scholar 

  13. Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75. https://doi.org/10.1016/J.CMA.2014.02.019

    Article  MathSciNet  Google Scholar 

  14. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806. https://doi.org/10.1016/j.cma.2014.10.025

    Article  MathSciNet  Google Scholar 

  15. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(41–44):4160–4183. https://doi.org/10.1016/j.cma.2007.04.007

    Article  Google Scholar 

  16. Das SK, Agrawal V, Gautam SS (2021) A comparative assessment of three different refinement strategies in NURBS-based isogeometric analysis. In: 66\(^\text{th}\) Congr Indian Soc Tech Appl Mech 3rd–5th December, 2021, Andhra Pradesh

  17. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1102–1119. https://doi.org/10.1002/nme.3159

    Article  MathSciNet  Google Scholar 

  18. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20. https://doi.org/10.1007/s00466-011-0623-4

    Article  MathSciNet  Google Scholar 

  19. De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123. https://doi.org/10.1002/gamm.201410005

    Article  MathSciNet  Google Scholar 

  20. De Lorenzis L, Wriggers P, Weißenfels C (2017) Computational contact mechanics with the finite element method. In: Encycl Comput Mech, 2\(^\text{nd}\) edn. Wiley, New York, pp 1–45. https://doi.org/10.1002/9781119176817.ecm2033

  21. Dimitri R, Zavarise G (2015) T-splines discretizations for large deformation contact problems. PAMM 15(1):183–184. https://doi.org/10.1002/PAMM.201510082

    Article  Google Scholar 

  22. Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech 60:315–332. https://doi.org/10.1007/S00466-017-1410-7

    Article  MathSciNet  Google Scholar 

  23. Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414. https://doi.org/10.1016/j.cma.2013.11.002

    Article  MathSciNet  Google Scholar 

  24. Du X, Zhao G, Wang W, Guo M, Zhang R, Yang J (2020) NLIGA: A MATLAB framework for nonlinear isogeometric analysis. Comput Aided Geom Des 80:101869. https://doi.org/10.1016/j.cagd.2020.101869

    Article  MathSciNet  Google Scholar 

  25. de Falco C, Reali A, Vázquez R (2011) GeoPDEs: A research tool for Isogeometric Analysis of PDEs. Adv Eng Softw 42(12):1020–1034. https://doi.org/10.1016/j.advengsoft.2011.06.010

    Article  Google Scholar 

  26. Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45:513–522. https://doi.org/10.1007/s00466-009-0464-6

    Article  Google Scholar 

  27. Hallquist JO (1976) Procedure for the solution of finite-deformation contact-impact problems by the finite element method. Technical report, Lawrence Livermore National Laboratory

  28. Hertz H (1882) Über die Berüehrung fester elastischer Körper (On the contact of solid elastic solids). J für die reine und Angew Math (J Pure Appl Math) 92:156–171

    Article  Google Scholar 

  29. Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems. Comput Methods Appl Mech Eng 301:242–258. https://doi.org/10.1016/j.cma.2015.12.011

    Article  MathSciNet  Google Scholar 

  30. Huang J, Nguyen-Thanh N, Zhou K (2018) An isogeometric-meshfree coupling approach for contact problems by using the third medium method. Int J Mech Sci 148:327–336. https://doi.org/10.1016/J.IJMECSCI.2018.08.031

    Article  Google Scholar 

  31. Hughes TJR, Taylor RL, Sackman JL, Curnier A (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276. https://doi.org/10.1016/0045-7825(76)90018-9

    Article  Google Scholar 

  32. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  Google Scholar 

  33. Johnson KL (1985) Contact Mechanics, 1\(^\text{st}\) edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139171731

  34. Kim JY, Youn SK (2012) Isogeometric contact analysis using mortar method. Int J Numer Methods Eng 89(12):1559–1581. https://doi.org/10.1002/nme.3300

    Article  MathSciNet  Google Scholar 

  35. Krüger M, Schulte J, Dittmann M, Hesch C (2018) Thermomechanical mortar contact problems with hierarchical refined NURBS for adhesion and anisotropic friction. PAMM 18(1):e201800347. https://doi.org/10.1002/pamm.201800347

    Article  Google Scholar 

  36. Kruse R, Nguyen-Thanh N, Wriggers P, De Lorenzis L (2018) Isogeometric frictionless contact analysis with the third medium method. Comput. Mech. 62:1009–1021. https://doi.org/10.1007/s00466-018-1547-z

    Article  MathSciNet  Google Scholar 

  37. Laursen TA (2003) Computational Contact and Impact Mechanics, 1\(^\text{st}\) edn. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04864-1

  38. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. Int J Numer Methods Eng 36(20):3451–3485. https://doi.org/10.1002/nme.1620362005

    Article  MathSciNet  Google Scholar 

  39. Li W, Nguyen-Thanh N, Zhou K (2020) An isogeometric-meshfree collocation approach for two-dimensional elastic fracture problems with contact loading. Eng Fract Mech 223:106779. https://doi.org/10.1016/j.engfracmech.2019.106779

    Article  Google Scholar 

  40. Lu J (2011) Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741. https://doi.org/10.1016/j.cma.2010.10.001

    Article  MathSciNet  Google Scholar 

  41. Maleki-Jebeli S, Mosavi-Mashhadi M, Baghani M (2018) A large deformation hybrid isogeometric-finite element method applied to cohesive interface contact/debonding. Comput Methods Appl Mech Eng 330:395–414. https://doi.org/10.1016/j.cma.2017.10.017

    Article  MathSciNet  Google Scholar 

  42. Maleki-Jebeli S, Musavi-Mashhadi M, Baghani M (2019) Hybrid IG-FE method applied to cohesive fracture/contact in particle-filled elastomeric composites. Int J Mech Mater Des 16:123–138. https://doi.org/10.1007/S10999-019-09459-9

    Article  Google Scholar 

  43. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39. https://doi.org/10.1016/j.cma.2012.11.011

    Article  MathSciNet  Google Scholar 

  44. Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520. https://doi.org/10.1016/j.cma.2014.10.010

    Article  MathSciNet  Google Scholar 

  45. Neto DM, Oliveira MC, Menezes LF (2017) Surface smoothing procedures in computational contact mechanics. Arch Comput Methods Eng 24:37–87. https://doi.org/10.1007/s11831-015-9159-7

    Article  MathSciNet  Google Scholar 

  46. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul 117:89–116. https://doi.org/10.1016/j.matcom.2015.05.008

    Article  MathSciNet  Google Scholar 

  47. Nguyen-Thanh N, Li W, Huang J, Srikanth N, Zhou K (2019) An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problem. Int J Numer Methods Eng 120(2):209–230. https://doi.org/10.1002/NME.6132

    Article  MathSciNet  Google Scholar 

  48. Otto P, De Lorenzis L, Unger JF (2019) Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method. Comput Mech 63:1203–1222. https://doi.org/10.1007/s00466-018-1645-y

    Article  MathSciNet  Google Scholar 

  49. Otto P, De Lorenzis L, Unger JF (2020) Explicit dynamics in impact simulation using a NURBS contact interface. Int J Numer Methods Eng 121(6):1248–1267. https://doi.org/10.1002/nme.6264

    Article  MathSciNet  Google Scholar 

  50. Ozarde AP, Narayan J, Yadav D, McNay GH, Gautam SS (2021) Optimization of diesel engine’s liner geometry to reduce head gasket’s fretting damage. SAE Int J Engines 14(1):81–97. https://doi.org/10.4271/03-14-01-0006

    Article  Google Scholar 

  51. Ozarde AP, McNay G, Gautam SS (2021) Fretting fatigue failures in internal combustion engine components: A review and future scope. SAE Int J Engines 14(2):211–234. https://doi.org/10.4271/03-14-02-0013

    Article  Google Scholar 

  52. Ozarde AP, McNay GH, Gautam SS (2022) Comparative fretting fatigue life evaluation between critical plane based and deviatoric strain amplitude based methods corrected for surface wear damage. SAE Int J Mater Manuf 15(2):111–132. https://doi.org/10.4271/05-15-02-0009

    Article  Google Scholar 

  53. Piegl L, Tiller W (1995) The NURBS Book, 2\(^\text{nd}\) edn. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-97385-7

  54. Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Dissertation, Technical University of Munich

  55. Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87(6):593–616. https://doi.org/10.1002/NME.3126

    Article  MathSciNet  Google Scholar 

  56. Sauer RA (2013) Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme. Comput Mech 52:301–319. https://doi.org/10.1007/s00466-012-0813-8

    Article  MathSciNet  Google Scholar 

  57. Talemi RH, Wahab MA, De Pauw J (2012) On finite element analysis of fretting fatigue. Technical report, Ghent University

  58. Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186. https://doi.org/10.1016/j.cma.2015.11.006

    Article  MathSciNet  Google Scholar 

  59. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112. https://doi.org/10.1016/j.cma.2010.11.020

    Article  MathSciNet  Google Scholar 

  60. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128. https://doi.org/10.1016/j.cma.2011.10.014

    Article  MathSciNet  Google Scholar 

  61. Vuong AV, Heinrich C, Simeon B (2010) ISOGAT: A 2D tutorial MATLAB code for isogeometric analysis. Comput Aided Geom Des 27(8):644–655. https://doi.org/10.1016/j.cagd.2010.06.006

    Article  MathSciNet  Google Scholar 

  62. Wilson EA, Parsons B (1970) Finite element analysis of elastic contact problems using differential displacements. Int J Numer Methods Eng 2(3):387–395. https://doi.org/10.1002/NME.1620020307

    Article  Google Scholar 

  63. Wriggers P (2006) Computational Contact Mechanics, 2\(^\text{nd}\) edn. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32609-0

  64. Wriggers P, Van Vu T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37(3):319–331. https://doi.org/10.1016/0045-7949(90)90324-U

    Article  Google Scholar 

  65. Wriggers P, Schröder J, Schwarz A (2013) A finite element method for contact using a third medium. Comput Mech 52:837–847. https://doi.org/10.1007/s00466-013-0848-5

    Article  MathSciNet  Google Scholar 

  66. Zimmermann C, Sauer RA (2017) Adaptive local surface refinement based on LR NURBS and its application to contact. Comput Mech 60:1011–1031. https://doi.org/10.1007/s00466-017-1455-7

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Science and Engineering Research Board (SERB), Department of Science and Technology (DST) under Project Nos. CRG/2022/002218 and IMP/2019/000276 and Vikram Sarabhai Space Centre (VSSC), Indian Space Research Organisation (ISRO) through MoU No. ISRO:2020:MOU:NO:480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Singh Gautam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Agrawal, V. & Gautam, S.S. Assessment of various isogeometric contact surface refinement strategies. J Braz. Soc. Mech. Sci. Eng. 46, 175 (2024). https://doi.org/10.1007/s40430-024-04712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04712-5

Keywords

Navigation