Skip to main content
Log in

A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2010

Abstract

Even after more than three decades of intensive research in the field of contact mechanics, there is still a great need for improving the numerical methods. Recent investigations on the 2D Hertzian contact problem clearly showed significantly varying results for different finite element versions. In this paper we will compare the analytical solution of the 2D Hertzian contact problem with the numerical results of the classical h-version with uniform and locally refined meshes, as well as with the p-, the hp-, and the rp-version of the FEM. The penalty method is used to incorporate the contact constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth M, Senior B (1997) Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers. Comput Methods Appl Mech Eng 150: 65–87

    Article  MATH  MathSciNet  Google Scholar 

  2. Argyris JH (1960) Energy theorems and structural analysis. Butterworth, London

    Google Scholar 

  3. Babuška I, Guo BQ (1996) Approximation properties of the hp-version of the finite element method. Comput Methods Appl Mech Eng 133: 319–346

    Article  MATH  Google Scholar 

  4. Başar Y, Hanskötter U, Schwab Ch (2003) A general high-order finite element formulation for shells at large strains and finite rotations. Int J Numer Methods Eng 57: 2147–2175

    Article  MATH  Google Scholar 

  5. Bröker H (2001) Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München

  6. Chan SH, Tuba IS (1971) A finite element method for contact problems in solid bodies. Int J Mech Sci 13: 615–639

    Article  Google Scholar 

  7. Demkowicz L (2006) Computing with hp-adaptive finite elements: one and two dimensional elliptic and Maxwell problems, vol 1. Chapman & Hall/CRC, London

    Google Scholar 

  8. Demkowicz L, Kurtz J, Pardo D, Paszyński M, Rachowicz W, Zdunek A (2007) Computing with hp-adaptive finite elements: three dimensional elliptic and Maxwell problems with applications, vol 2. Chapman & Hall/CRC, London

    Google Scholar 

  9. Dey S (1997) Geometry based three-dimensional hp-finite element modelling and computation. PhD thesis, Faculty of Rensselaer Polytechnic Institute

  10. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52: 673–703

    Article  MATH  Google Scholar 

  11. Düster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192: 5147–5166

    Article  MATH  Google Scholar 

  12. Düster A, Rank E (2001) The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput Methods Appl Mech Eng 190: 1925–1935

    Article  MATH  Google Scholar 

  13. Düster A, Rank E (2002) A p-version finite element approach for two- and three-dimensional problems of the J 2 flow theory with non-linear isotropic hardening. Int J Numer Methods Eng 53: 49–63

    Article  MATH  Google Scholar 

  14. Düster A, Scholz D, Rank E (2007) pq-Adaptive solid finite elements for three-dimensional plates and shells. Comput Methods Appl Mech Eng 197: 243–254

    Article  MATH  Google Scholar 

  15. Eck C, Schulz H, Steinbach O, Wendland WL (2003) An adaptive boundary element method for contact problems. In: Ramm E, Rank E, Rannacher R, Schweizerhof K, Stein E, Wendland W, Wittum G, Wriggers P, Wunderlich W (eds) Error-controlled adaptive finite elements in solid mechanics. John Wiley & Sons, New York, pp 181–209

    Google Scholar 

  16. Eck C, Wendland WL (2003) A residual-based error estimator for bem-discretizations of contact problems. Numer Math 95: 253–282

    Article  MATH  MathSciNet  Google Scholar 

  17. Engeln-Müllges G, Reutter F (1996) Numerik-Algorithmen. VDI-Verlag, Düsseldorf

    Google Scholar 

  18. Franke D, Düster A, Rank E (2008) The p-version of the FEM for computational contact mechanics. Proc Appl Math Mech 8(1): 10271–10272

    Article  Google Scholar 

  19. Goldsmith W (2002) Impact, 1st edn. Dover Publications, New York

    Google Scholar 

  20. Gordon WJ, Hall ChA (1973) Transfinite element methods: blending function interpolation over arbitrary curved element domains. Numer Math 21: 109–129

    Article  MATH  MathSciNet  Google Scholar 

  21. Hartmann S (2007) Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. PhD thesis, Institut für Baustatik und Baudynamik, Universität Stuttgart

  22. Hegadekatte V, Huber N, Kraft O (2008) Development of a simulation tool for wear in microsystems. In: Löhe D, Haußelt J (eds) Advanced micro and nanosystems. Microengineering of Metals and Ceramics Part II, vol 4. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 605–623

    Google Scholar 

  23. Heißerer U, Hartmann S, Düster A, Bier W, Yosibash Z, Rank E (2008) p-FEM for finite deformation powder compaction. Comput Methods Appl Mech Eng 197: 727–740

    Article  MATH  Google Scholar 

  24. Heißerer U, Hartmann S, Düster A, Yosibash Z (2008) On volumetric locking-free behavior of p-version finite elements under finite deformations. Commun Numer Methods Eng 24: 1019–1032

    MATH  Google Scholar 

  25. Hertz H (1881) Über die berührung fester elastischer körper. Journal für die reine und angewandte Mathematik 92: 156–171

    Google Scholar 

  26. Holzer S, Yosibash Z (1996) The p-version of the finite element method in incremental elasto-plastic analysis. Int J Numer Methods Eng 39: 1859–1878

    Article  MATH  Google Scholar 

  27. Johnson KL (1985) Contact mechanics, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Konyukhov A, Schweizerhof K (2009) Incorporation of contact for high-order finite elements in covariant form. Comput Methods Appl Mech Eng 198(13–14): 1213–1223

    Article  MATH  MathSciNet  Google Scholar 

  29. Krause R, Mücke R, Rank E (1995) hp-Version finite elements for geometrically nonlinear problems. Commun Numer Methods Eng 11: 887–897

    Article  MATH  Google Scholar 

  30. Laursen TA (2003) Computational contact and impact mechanics. Springer, Berlin

    Google Scholar 

  31. Nübel V, Düster A, Rank E (2007) An rp-adaptive finite element method for elastoplastic problems. Comput Mech 39: 557–574

    Article  MATH  Google Scholar 

  32. Páczelt I, Szabó B, Szabó T (2000) Solution of contact problem using the hp-version of the finite element method. Comput Math Appl 38: 49–69

    Article  Google Scholar 

  33. Páczelt I, Szabó T (2002) Solution of contact optimization problems of cylindrical bodies using hp-fem. Int J Numer Methods Eng 53: 123–146

    Article  MATH  Google Scholar 

  34. Pedersen P (2006) A direct analysis of elastic contact. Comput Mech 37(1): 221–231

    Article  MATH  Google Scholar 

  35. Rank E, Düster A, Nübel V, Preusch K, Bruhns OT (2005) High order finite elements for shells. Comput Methods Appl Mech Eng 194: 2494–2512

    Article  MATH  Google Scholar 

  36. Rank E, Krause R, Preusch K (1998) On the accuracy of p-version elements for the Reissner–Mindlin plate problem. Int J Numer Methods Eng 43: 51–67

    Article  MATH  Google Scholar 

  37. Schwab Ch (1998) p- and hp-finite element methods, theory and applications in solid and fluid mechanics. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Shigley JE, Mischke CR, Budynas RG (2004) Mechanical engineering design, 7th edn. McGraw-Hill, New York

    Google Scholar 

  39. Szabó BA, Actis R, Holzer S (1995) Solution of elastic–plastic stress analysis problems by the p-version of the finite element method. In: Babuška I, Flaherty J (eds) Modeling, mesh generation, and adaptive numerical methods for partial differential equations, IMA Volumes in Mathematics and its Applications, vol 75. Springer, New York, pp 395–416

    Google Scholar 

  40. Szabó BA, Babuška I (1991) Finite element analysis. John Wiley & Sons, New York

    MATH  Google Scholar 

  41. Szabó BA, Düster A, Rank E (2004) The p-version of the Finite Element Method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics, vol 1, chap 5. John Wiley & Sons, New York, pp 119–139

  42. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23: 805–823

    Google Scholar 

  43. Wilkins ML (1964) Calculation of elastic-plastic flow. In: Alder B et al (eds) Methods of computational physics, vol 3. Academic Press: New York

  44. Wilson EA, Parsons B (1970) Finite element analysis of elastic contact problems using differential displacements. Int J Numer Methods Eng 2(3): 387–395

    Article  Google Scholar 

  45. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  46. Wriggers P (2009) Nonlinear finite-element-methods. Springer, Berlin

    Google Scholar 

  47. Wriggers P, Nackenhorst U (2006) Analysis and simulation of contact problems, vol 27. Lecture notes in applied and computational mechanics. Springer, Berlin

  48. Wriggers P, Zavarise G (2004) Computational contact mechanics. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 2, chap 6. John Wiley & Sons, New York, pp 195–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Franke.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00466-010-0483-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, D., Düster, A., Nübel, V. et al. A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45, 513–522 (2010). https://doi.org/10.1007/s00466-009-0464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0464-6

Keywords

Navigation