Skip to main content

Advertisement

Log in

Machining of shape-memory alloys using electrical discharge machining with an elaborate study of optimization approaches: a review

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Shape-memory alloys (SMAs) are preferred currently for multifarious purposes because of their exceptional properties as compared to counterparts, viz. shape-memory effect, superelasticity, corrosion resistance, bioadaptability, resistance to wear, etc. A multitude of research activities regarding the machining of SMAs has been done. The conventional machining techniques have shortcomings related to surface morphology as it generates undesirable tool wear and low accuracy of machined parts. Among the unconventional methods, electrical discharge machining (EDM) and its allied variations have created a buzz in machining of SMAs. This study is an effort to carry out an investigation of the work done by vivid researchers in machining of SMAs using die-sinking EDM and die-sinking micro-EDM. The input parameters and response features of EDM are discussed. The research focusing on nickel titanium (NiTi)-based, copper (Cu)-based and other SMAs using EDM in particular is elaborated here. The general overview of several optimization methods, viz. non-traditional methods, multi-criteria decision making methods, and statistical methods, is presented elaborately. A review of optimization with their implementation in EDM machining of SMAs by researchers is incorporated in this article. The techniques for advanced processing of SMAs and hybrid EDM methods are reviewed. The future scope of research on the current topic is suggested through this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Reproduced with permission from Elsevier

Fig. 9

Reproduced with permission from Elsevier

Fig. 10

Reproduced with permission from Elsevier

Fig. 11

Reproduced with permission from Elsevier

Fig. 12

Reproduced with permission from Elsevier

Fig. 13

Reproduced with permission from Elsevier

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Alloys SC (1932) Cadmium-Gold Alloys Solid. J Am Chem Soc 337:1

    Google Scholar 

  2. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477. https://doi.org/10.1063/1.1729603

    Article  Google Scholar 

  3. Kauffman GB, Mayo I (1997) The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2:1–21. https://doi.org/10.1007/s00897970111a

    Article  Google Scholar 

  4. Adiguzel O (2012) Martensitic transformation and microstructural characteristics in copper based shape memory alloys. Key Eng Mater 510–511:105–110. https://doi.org/10.4028/www.scientific.net/KEM.510-511.105

    Article  Google Scholar 

  5. Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253. https://doi.org/10.4028/www.scientific.net/AMM.663.248

    Article  Google Scholar 

  6. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221:535–552. https://doi.org/10.1243/09544100JAERO211

    Article  Google Scholar 

  7. Michiardi A, Aparicio C, Planell JA, Gil FJ (2007) Electrochemical behaviour of oxidized NiTi shape memory alloys for biomedical applications. Surf Coatings Technol 201:6484–6488. https://doi.org/10.1016/j.surfcoat.2006.12.023

    Article  Google Scholar 

  8. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266–1274. https://doi.org/10.1016/j.engstruct.2005.12.010

    Article  Google Scholar 

  9. Wei ZG, Tang CY, Lee WB (1997) Design and fabrication of intelligent composites based on shape memory alloys. J Mater Process Technol 69:68–74. https://doi.org/10.1016/S0924-0136(96)00041-6

    Article  Google Scholar 

  10. Motzki P, Khelfa F, Zimmer L et al (2019) Design and validation of a reconfigurable robotic end-effector based on shape memory alloys. IEEE/ASME Trans Mechatron 24:293–303. https://doi.org/10.1109/TMECH.2019.2891348

    Article  Google Scholar 

  11. Motzki P, Seelecke S (2019) Industrial applications for shape memory alloys. Ref Modul Mater Sci Mater Eng 182:1–9. https://doi.org/10.1016/b978-0-12-803581-8.11723-0

    Article  Google Scholar 

  12. Buehler WJ, Wang FE (1968) Ocean Engng. Vol. 1, pp. 105–120. Pergamon Press 1968. Printed in Great Britain. Ocean Eng 1:105–120

  13. Fernandes DJ, Peres RV, Mendes AM, Elias CN (2011) Understanding the shape-memory alloys used in orthodontics. ISRN Dent 2011:1–6. https://doi.org/10.5402/2011/132408

    Article  Google Scholar 

  14. Dasgupta R (2014) A look into Cu-based shape memory alloys: present scenario and future prospects. J Mater Res 29:1681–1698. https://doi.org/10.1557/jmr.2014.189

    Article  Google Scholar 

  15. Czaderski C, Weber B, Shahverdi M, et al (2015) Iron-based shape memory alloys (Fe-SMA)—a new material for prestressing concrete structures. Smar 2015

  16. Manjaiah M, Narendranath S, Basavarajappa S (2014) Review on non-conventional machining of shape memory alloys. Trans Nonferrous Met Soc China (English Ed 24:12–21. https://doi.org/10.1016/S1003-6326(14)63022-3

  17. Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378:180–184. https://doi.org/10.1016/j.msea.2003.10.344

    Article  Google Scholar 

  18. Velmurugan C, Senthilkumar V, Dinesh S, Arulkirubakaran D (2018) Machining of NiTi-shape memory alloys-A review. Mach Sci Technol 22:355–401. https://doi.org/10.1080/10910344.2017.1365894

    Article  Google Scholar 

  19. Chandrasekaran SKTNNM (2016) Optimization of EDM process in machining micro holes for improvement of hole quality. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-016-0630-7

    Article  Google Scholar 

  20. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  21. Vidya S, Wattal R, Rao PV (2021) Investigation of machining performance in die-sinking electrical discharge machining of pentagonal micro-cavities using cylindrical electrode. J Braz Soc Mech Sci Eng 43:1–9. https://doi.org/10.1007/s40430-021-03012-6

    Article  Google Scholar 

  22. Qudeiri JEA, Zaiout A, Mourad AHI et al (2020) Principles and characteristics of different EDM processes in machining tool and die steels. Appl Sci 10:1–46. https://doi.org/10.3390/app10062082

    Article  Google Scholar 

  23. Meena VK, Azad MS, Singh S, Singh N (2017) Micro-EDM multiple parameter optimization for Cp titanium. Int J Adv Manuf Technol 89:897–904. https://doi.org/10.1007/s00170-016-9130-2

    Article  Google Scholar 

  24. Moylan SP, Chandrasekar S, Benavides GL (2005) High-Speed micro-electro-discharge machining. Sandia Rep 61:1

    Google Scholar 

  25. Uhlmann E, Piltz S, Doll U (2005) Machining of micro/miniature dies and moulds by electrical discharge machining - Recent development. J Mater Process Technol 167:488–493. https://doi.org/10.1016/j.jmatprotec.2005.06.013

    Article  Google Scholar 

  26. Masuzawa T (2000) State of the art of micromachining. CIRP Ann - Manuf Technol 49:473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  27. Dikshit MK, Anand J, Narayan D, Jindal S (2019) Machining characteristics and optimization of process parameters in die—sinking EDM of Inconel 625. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1809-5

    Article  Google Scholar 

  28. Kumar S, Gupta AK, Chandna P (2019) State of art optimization techniques for machining parameters optimization during milling. Int J Eng Adv Technol 8:5104–5114. https://doi.org/10.35940/ijeat.F9562.088619

  29. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34. https://doi.org/10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  30. Markos S, Zs J, Viharos LM (1998) Quality-oriented, comprehensive modelling of machining processes. Sixth ISMQC IMEKO Symp Metrol Qual Control Prod 67–74

  31. Rao RV, Kalyankar VD (2014) Optimization of modern machining processes using advanced optimization techniques: a review. Int J Adv Manuf Technol 73:1159–1188. https://doi.org/10.1007/s00170-014-5894-4

    Article  Google Scholar 

  32. Lin JL, Lin CL (2005) The use of grey-fuzzy logic for the optimization of the manufacturing process. J Mater Process Technol 160:9–14. https://doi.org/10.1016/j.jmatprotec.2003.11.040

    Article  Google Scholar 

  33. Muralikannan TSSR, Cylindricity CY, Perpendicularity PP (2019) Enhancing the geometric tolerance of aluminium hybrid metal matrix composite using EDM process. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1553-2

    Article  Google Scholar 

  34. Tzeng CJ, Chen RY (2013) Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach. Int J Precis Eng Manuf 14:709–717. https://doi.org/10.1007/s12541-013-0095-x

    Article  Google Scholar 

  35. Mandal D, Pal SK, Saha P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186:154–162. https://doi.org/10.1016/j.jmatprotec.2006.12.030

    Article  Google Scholar 

  36. Quarto M, D’urso G, Giardini C, et al (2021) A comparison between finite element model (Fem) simulation and an integrated artificial neural network (ann)-particle swarm optimization (pso) approach to forecast performances of micro electro discharge machining (micro-edm) drilling. Micromachines. https://doi.org/10.3390/mi12060667

    Article  Google Scholar 

  37. Teimouri R, Baseri H (2014) Optimization of magnetic field assisted EDM using the continuous ACO algorithm. Appl Soft Comput J 14:381–389. https://doi.org/10.1016/j.asoc.2013.10.006

    Article  Google Scholar 

  38. Moghaddam MA, Kolahan F (2015) An optimised back propagation neural network approach and simulated annealing algorithm towards optimisation of EDM process parameters. Int J Manuf Res 10:215–236. https://doi.org/10.1504/IJMR.2015.071616

    Article  Google Scholar 

  39. Devarasiddappa D, Chandrasekaran M (2020) Experimental investigation and optimization of sustainable performance measures during wire-cut EDM of Ti-6Al-4V alloy employing preference-based TLBO algorithm. Mater Manuf Process 35:1204–1213. https://doi.org/10.1080/10426914.2020.1762211

    Article  Google Scholar 

  40. Gupta K (2021) Intelligent machining of shape memory alloys. Adv Sci Technol Res J 15:43–53. https://doi.org/10.12913/22998624/138303

  41. Kumar R, Singh S, Bilga PS et al (2021) Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J Mater Res Technol 10:1471–1492. https://doi.org/10.1016/j.jmrt.2020.12.114

    Article  Google Scholar 

  42. Gangele A, Mishra A (2018) Surface roughness optimization during machining of NiTi shape memory alloy by EDM through Taguchi’s technique. Mater Today Proc 29:343–347. https://doi.org/10.1016/j.matpr.2020.07.287

    Article  Google Scholar 

  43. Rakesh C, Vora JJ, Mani Prabu SS, Palani IA, Patel VKDMP, LNL de (2019) Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Materials MDPI 12:1

  44. Sun L, Huang WM (2009) Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 51:573–578. https://doi.org/10.1007/s11041-010-9213-x

    Article  Google Scholar 

  45. Naresh C, Bose PSC, Rao CSP (2016) Shape memory alloys: a state of art review. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/149/1/012054

    Article  Google Scholar 

  46. Murari MS, Pattabi M (2017) Martensitic transformations and morphology studies of NiTi shape memory alloy. AIP Conf Proc. https://doi.org/10.1063/1.4980185

    Article  Google Scholar 

  47. Rastogi R, Pawar SJ (2019) A computational study of shape memory effect and pseudoelasticity of NiTi alloy under uniaxial tension during complete and partial phase transformation. Mater Res Express. https://doi.org/10.1088/2053-1591/ab06e1

    Article  Google Scholar 

  48. Das S, Paul S, Doloi B (2020) Feasibility assessment of some alternative dielectric mediums for sustainable electrical discharge machining : a review work. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-2238-1

    Article  Google Scholar 

  49. Bhattacharyya B (2020) Machining processes utilizing thermal energy. Mod Mach Technol

  50. Meshram DB, Puri YM (2017) Review of research work in die sinking EDM for machining curved hole. J Braz Soc Mech Sci Eng 39:2593–2605. https://doi.org/10.1007/s40430-016-0622-7

    Article  Google Scholar 

  51. Pawade MM, Banwait SS (2013) An exhaustive review of die sinking electrical discharge machining process and scope for future research. WasetOrg 7:683–689

    Google Scholar 

  52. Mohd Abbas N, Solomon DG, Fuad Bahari M (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47:1214–1228. https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  53. Czelusniak T, Fernandes C, Ricardo H et al (2019) Materials used for sinking EDM electrodes: a review. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1520-y

    Article  Google Scholar 

  54. Banu A, Ali MY (2016) Electrical discharge machining (EDM): a review. Int J Eng Mater Manuf 1:3–10. https://doi.org/10.2776/ijemm.01.01.2016.02

    Article  Google Scholar 

  55. Pham DT, Dimov SS, Bigot S et al (2004) Micro-EDM—recent developments and research issues. J Mater Process Technol 149:50–57. https://doi.org/10.1016/j.jmatprotec.2004.02.008

    Article  Google Scholar 

  56. Kumar D, Singh NK, Bajpai V (2020) Recent trends, opportunities and other aspects of micro—EDM for advanced manufacturing: a comprehensive review. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02296-4

    Article  Google Scholar 

  57. Kadirvel A, Hariharan P (2014) Optimization of the die-sinking micro-EDM process for multiple performance characteristics using the taguchi-based grey relational analysis. Mater Tehnol 48:27–32

    Google Scholar 

  58. Kadirvel A, Hariharan P, Mudhukrishnan M (2014) A study on the die-sinking micro-electrical discharge machining of EN-24 die steel using various electrode materials. Adv Mater Res 984–985:73–82. https://doi.org/10.4028/www.scientific.net/AMR.984-985.73

    Article  Google Scholar 

  59. Liu Y, Wang C, Yang X et al (2020) Fracture behaviour of the 304 stainless steel with micro-EDMed micro-holes. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02361-y

    Article  Google Scholar 

  60. Zahiruddin M, Kunieda M (2012) Comparison of energy and removal efficiencies between micro and macro EDM. CIRP Ann - Manuf Technol 61:187–190. https://doi.org/10.1016/j.cirp.2012.03.006

    Article  Google Scholar 

  61. Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of Micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19. https://doi.org/10.1007/s00170-009-2056-1

    Article  Google Scholar 

  62. Zhang W, Liu Y, Zhang S, et al (2015) Research on the gap flow simulation of debris removal process for small hole EDM machining with Ti alloy. 2121–2126. https://doi.org/10.2991/icmmcce-15.2015.409

  63. Ozgedik A, Cogun C (2006) An experimental investigation of tool wear in electric discharge machining. Int J Adv Manuf Technol 27:488–500. https://doi.org/10.1007/s00170-004-2220-6

    Article  Google Scholar 

  64. Masuzawa T (1983) A Self-Flushing Method with Spark-Erosion Machining 32:109–111

    Google Scholar 

  65. Wang J, Han F (2014) Simulation model of debris and bubble movement in electrode jump of electrical discharge machining. Int J Adv Manuf Technol 74:591–598. https://doi.org/10.1007/s00170-014-6008-z

    Article  Google Scholar 

  66. Tong H, Li Y, Wang Y (2008) Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. J Mater Process Technol 208:289–298. https://doi.org/10.1016/j.jmatprotec.2007.12.126

    Article  Google Scholar 

  67. Feng GL, Yang XD, Chi GX (2017) Study on machining characteristics of micro EDM with high spindle speed using non-contact electric feeding method. Int J Adv Manuf Technol 92:1979–1989. https://doi.org/10.1007/s00170-017-0290-5

    Article  Google Scholar 

  68. Ganapati ST, Pachapuri MSA, Adake CV (2019) Influence of process parameters of electrical discharge machining on MRR, TWR and surface roughness: A review. AIP Conf Proc. https://doi.org/10.1063/1.5123967

    Article  Google Scholar 

  69. Singh R, Singh RP, Trehan R (2021) State of the art in processing of shape memory alloys with electrical discharge machining: a review

  70. Singh AK, Kar S, Patowari PK (2020) Accuracy improvement and precision measurement on micro-EDM. In: Lecture notes in mechanical engineering, pp 47–77

  71. Patowari PK, Kar S, Debnath T, Singh AK (2021) Proficiency of electrical discharge machining in fabrication of microstructures. Advances in manufacturing processes, lecture notes

  72. Liu Y, Chang H, Zhang W et al (2018) A simulation study of debris removal process in ultrasonic vibration assisted electrical discharge machining (EDM) of deep holes. Micromachines. https://doi.org/10.3390/mi9080378

    Article  Google Scholar 

  73. Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209:3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032

    Article  Google Scholar 

  74. Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169:427–436. https://doi.org/10.1016/j.jmatprotec.2005.03.028

    Article  Google Scholar 

  75. Tariq Jilani S, Pandey PC (1983) An analysis of surface erosion in electrical discharge machining. Wear 84:275–284. https://doi.org/10.1016/0043-1648(83)90269-7

    Article  Google Scholar 

  76. Soni JS, Chakraverti G (1996) Experimental investigation on migration of material during EDM of die steel (T215 Cr12). J Mater Process Technol 56:439–451. https://doi.org/10.1016/0924-0136(95)01858-1

    Article  Google Scholar 

  77. Marafona J, Wykes C (2000) New method of optimising material removal rate using EDM with copper-tungsten electrodes. Int J Mach Tools Manuf 40:153–164. https://doi.org/10.1016/S0890-6955(99)00062-0

    Article  Google Scholar 

  78. Duerig TW, Pelton AR (1994) Ti-Ni shape memory alloys. Mater Prop Handb Titan Alloy 683:1035–1048

    Google Scholar 

  79. Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306:51–63. https://doi.org/10.1016/j.wear.2013.05.011

    Article  Google Scholar 

  80. Wu SK, Lin HC, Chen CC (1999) A study on the machinability of a Ti 49.6 Ni 50.4 shape memory alloy. Mater Lett 40:27–32

    Article  Google Scholar 

  81. Piquard R, Acunto AD, Dudzinski D, et al (2015) Study of burr formation and phase transformation during micro-milling of NiTi alloys To cite this version: Science Arts & Métiers (SAM )

  82. Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Analysis of tool-wear and cutting force components in dry, preheated, and cryogenic machining of NiTi shape memory alloys. Procedia CIRP 8:498–503. https://doi.org/10.1016/j.procir.2013.06.140

    Article  Google Scholar 

  83. Zadafiya K, Dinbandhu KS et al (2021) Recent trends in non-traditional machining of shape memory alloys (SMAs): a review. CIRP J Manuf Sci Technol 32:217–227. https://doi.org/10.1016/j.cirpj.2021.01.003

    Article  Google Scholar 

  84. Gaikwad MU (2019) Investigation and optimization of process parameters in electrical discharge machining (EDM) process for NiTi 60. Mater Res Express 6(6):18

    Article  Google Scholar 

  85. Chen SL, Hsieh SF, Lin HC et al (2007) Electrical discharge machining of TiNiCr and TiNiZr ternary shape memory alloys. Mater Sci Eng A 445–446:486–492. https://doi.org/10.1016/j.msea.2006.09.109

    Article  Google Scholar 

  86. Hsieh SF, Hsue AWJ, Chen SL et al (2013) EDM surface characteristics and shape recovery ability of Ti 35.5Ni48.5Zr16 and Ni60Al 24.5Fe15.5 ternary shape memory alloys. J Alloys Compd 571:63–68. https://doi.org/10.1016/j.jallcom.2013.03.111

    Article  Google Scholar 

  87. Gaikwad V, Jatti VKS (2018) Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. J King Saud Univ - Eng Sci 30:266–272. https://doi.org/10.1016/j.jksues.2016.04.003

    Article  Google Scholar 

  88. Fu CH, Liu JF, Guo YB, Zhao QZ (2016) A comparative study on white layer properties by laser cutting vs. electrical discharge machining of nitinol shape memory alloy. Procedia CIRP 42:246–251. https://doi.org/10.1016/j.procir.2016.02.280

    Article  Google Scholar 

  89. Jatti VS (2018) Multi-characteristics optimization in EDM of NiTi alloy, NiCu alloy and BeCu alloy using Taguchi’s approach and utility concept. Alexandria Eng J 57:2807–2817. https://doi.org/10.1016/j.aej.2017.11.004

    Article  Google Scholar 

  90. Gaikwad MU, Jatti VS (2020) Predictive analysis of Surface Roughness during EDM machining of NiTi60 alloy using Taguchi technique and Empirical Modeling : A Comparative Investigation. 29:1745–1753

  91. Daneshmand S, Kahrizi EF, Abedi E, Mir Abdolhosseini M (2013) Influence of machining parameters on electro discharge machining of NiTi shape memory alloys. Int J Electrochem Sci 8:3095–3104

    Google Scholar 

  92. Hsieh SF, Lin MH, Chen SL et al (2016) Surface modification and machining of TiNi/TiNb-based alloys by electrical discharge machining. Int J Adv Manuf Technol 86:1475–1485. https://doi.org/10.1007/s00170-015-8257-x

    Article  Google Scholar 

  93. Huang TS, Hsieh SF, Chen SL et al (2015) Surface modification of TiNi-based shape memory alloys by dry electrical discharge machining. J Mater Process Technol 221:279–284. https://doi.org/10.1016/j.jmatprotec.2015.02.025

    Article  Google Scholar 

  94. Daneshmand S, Monfared V, Lotfi Neyestanak AA (2017) Effect of tool rotational and Al2O3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. SILICON 9:273–283. https://doi.org/10.1007/s12633-016-9412-1

    Article  Google Scholar 

  95. Daneshmand S, Kahrizi EF, Neyestanak AAL, Ghahi MM (2013) Experimental investigations into electro discharge machining of NiTi shape memory alloys using rotational tool. Int J Electrochem Sci 8:7484–7497

    Google Scholar 

  96. Theisen W, Schuermann A (2004) Electro discharge machining of nickel-titanium shape memory alloys. Mater Sci Eng A 378:200–204. https://doi.org/10.1016/j.msea.2003.09.115

    Article  Google Scholar 

  97. Alidoosti A, Ghafari-Nazari A, Moztarzadeh F et al (2013) Electrical discharge machining characteristics of nickel-titanium shape memory alloy based on full factorial design. J Intell Mater Syst Struct 24:1546–1556. https://doi.org/10.1177/1045389X13476147

    Article  Google Scholar 

  98. Sabouni HR, Daneshmand S (2012) Investigation of the parameters of EDM process performed on smart NiTi Alloy Using Graphite Tools. Life Sci J 9:504–510

    Google Scholar 

  99. Rasheed MS, Abidi MH (2012) Analysis of Influence of micro-EDM Parameters on MRR, TWR and Ra in Machining Ni-Ti Shape Memory Alloy. Int J Recent Technol Eng 1:32–37

    Google Scholar 

  100. Abidi MH, Al-Ahmari AM, Umer U, Rasheed MS (2018) Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based ssshape memory alloy using MOGA-II. Meas J Int Meas Confed 125:336–349. https://doi.org/10.1016/j.measurement.2018.04.096

    Article  Google Scholar 

  101. Abidi MH, Al-Ahmari AM, Siddiquee AN et al (2017) An investigation of the micro-electrical discharge machining of nickel-titanium shape memory alloy using grey relations coupled with principal component analysis. Metals (Basel) 7:1–15. https://doi.org/10.3390/met7110486

    Article  Google Scholar 

  102. Al-Ahmari AMA, Rasheed MS, Mohammed MK, Saleh T (2016) A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium-based shape memory alloy. Mater Manuf Process 31:447–455. https://doi.org/10.1080/10426914.2015.1019102

    Article  Google Scholar 

  103. Rasheed MS, Abidi MH, El-Tamimi AM, Al-Ahmari AM (2013) Investigation of micro-EDM input parameters on various outputs in machining Ni-Ti shape memory alloy using full factorial design. Adv Mater Res 816–817:173–179. https://doi.org/10.4028/www.scientific.net/AMR.816-817.173

    Article  Google Scholar 

  104. Jahan MP, Kakavand P, Alavi F (2017) A comparative study on micro-electro-discharge-machined surface characteristics of Ni-Ti and Ti-6Al-4V with respect to biocompatibility. Procedia Manuf 10:232–242. https://doi.org/10.1016/j.promfg.2017.07.051

    Article  Google Scholar 

  105. James S, Kakadiya S (2018) Experimental study of machining of shape memory alloys using dry micro electrical discharge machining process. ASME 2018 13th Int Manuf Sci Eng Conf MSEC 2018 4:1–5. https://doi.org/10.1115/MSEC2018-6573

  106. Mwangi JW, Bui VD, Thüsing K et al (2020) Characterization of the arcing phenomenon in micro-EDM and its effect on key mechanical properties of medical-grade Nitinol. J Mater Process Technol 275:116334. https://doi.org/10.1016/j.jmatprotec.2019.116334

    Article  Google Scholar 

  107. Zhu Z, Guo D, Xu J et al (2020) Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines 11:1–15. https://doi.org/10.3390/mi11111018

    Article  Google Scholar 

  108. Kim HY, Miyazaki S (2008) Alternative shape memory alloys. Shape Mem Alloy Biomed Appl. https://doi.org/10.1533/9781845695248.1.69

    Article  Google Scholar 

  109. Yamauchi K (2011) Development and commercialization of titanium–nickel (Ti–Ni) and copper (Cu)-based shape memory alloys (SMAs). Woodhead Publishing Limited

  110. Fugazza D (2003) Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations. Eur Sch Adv Stud Reduct Seism Risk 148:1

    Google Scholar 

  111. Motoyasu G, Kaneko M, Soda H, McLean A (2001) Continuously cast Cu-Al-Ni shape memory wires with a unidirectional morphology. Metall Mater Trans A Phys Metall Mater Sci 32:585–593. https://doi.org/10.1007/s11661-001-0075-0

    Article  Google Scholar 

  112. Sugimoto K, Kamei K, Matsumoto H, et al (1982) Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. J Phys (Paris) Colloq 43:1. https://doi.org/10.1051/jphyscol:19824124

  113. Lee JS, Wayman CM (1986) Grain refinement of Cu-Zn-Al shape memory alloys. Zeitschrift fuer Met Res Adv Tech 81:419–423

    Google Scholar 

  114. Morris MA (1991) Influence of boron additions on ductility and microstructure of shape memory CuAlNi alloys. Scr Metall Mater 25:2541–2546. https://doi.org/10.1016/0956-716X(91)90065-9

    Article  Google Scholar 

  115. Sutou Y, Omori T, Wang JJ et al (2004) Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Mater Sci Eng A 378:278–282. https://doi.org/10.1016/j.msea.2003.12.048

    Article  Google Scholar 

  116. Kainuma R, Satoh N, Liu XJ et al (1998) Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system. J Alloys Compd 266:191–200. https://doi.org/10.1016/S0925-8388(97)00425-8

    Article  Google Scholar 

  117. Kumar P, Jain AK, Hussain S et al (2015) Changes in the properties of Cu-Al-Mn shape memory alloy due to quaternary addition of different elements. Rev Mater 20:284–292. https://doi.org/10.1590/S1517-707620150001.0028

    Article  Google Scholar 

  118. Liu JL, Huang HY, Xie JX (2014) The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater Des 64:427–433. https://doi.org/10.1016/j.matdes.2014.07.070

    Article  Google Scholar 

  119. Chentouf SM, Bouabdallah M, Cheniti H et al (2010) Ageing study of Cu-Al-Be hypoeutectoid shape memory alloy. Mater Charact 61:1187–1193. https://doi.org/10.1016/j.matchar.2010.07.009

    Article  Google Scholar 

  120. Asanović V, Delijić K, Jauković N (2008) A study of transformations of β-phase in Cu-Zn-Al shape memory alloys. Scr Mater 58:599–601. https://doi.org/10.1016/j.scriptamat.2007.11.033

    Article  Google Scholar 

  121. Mallik US, Sampath V (2008) Effect of composition and ageing on damping characteristics of Cu-Al-Mn shape memory alloys. Mater Sci Eng A 478:48–55. https://doi.org/10.1016/j.msea.2007.05.073

    Article  Google Scholar 

  122. Gustmann T, dos Santos JM, Gargarella P et al (2017) Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting. Shape Mem Superelasticity 3:24–36. https://doi.org/10.1007/s40830-016-0088-6

    Article  Google Scholar 

  123. Ali MA, Samsul M, Hussein NIS et al (2013) The Effect of EDM die-sinking parameters on material removal rate of Beryllium Copper using full factorial method. Middle East J Sci Res 16:44–50. https://doi.org/10.5829/idosi.mejsr.2013.16.01.2249

    Article  Google Scholar 

  124. Yildiz Y, Sundaram MM, Rajurkar KP, Nalbant M (2011) The Effects of Cold and Cryogenic Treatments on the Machinability of Beryllium-Copper Alloy in Electro Discharge Machining. 44th CIRP Conf Manuf Syst

  125. Shamsudin S, Tun U, Onn H, et al (2009) Electrical Discharge Machining ( EDM ) of Beryllium Copper Alloys Using Design of Experiment ( DOE ) Approach. 256–268

  126. Cladera A, Weber B, Leinenbach C et al (2014) Iron-based shape memory alloys for civil engineering structures: An overview. Constr Build Mater 63:281–293. https://doi.org/10.1016/j.conbuildmat.2014.04.032

    Article  Google Scholar 

  127. Sato A, Kubo H, Maruyama T (2006) Mechanical properties of Fe-Mn-Si based SMA and the application. Mater Trans 47:571–579. https://doi.org/10.2320/matertrans.47.571

    Article  Google Scholar 

  128. Baruj A, Kikuchi T, Kajiwara S, Shinya N (2004) Improvement of shape memory properties of NbC containing Fe-Mn-Si based shape memory alloys by simple thermomechanical treatments. Mater Sci Eng A 378:333–336. https://doi.org/10.1016/j.msea.2003.10.357

    Article  Google Scholar 

  129. Patoor E, Lagoudas DC, Entchev PB et al (2006) Shape memory alloys, Part I: General properties and modeling of single crystals. Mech Mater 38:391–429. https://doi.org/10.1016/j.mechmat.2005.05.027

    Article  Google Scholar 

  130. George EP, Liu CT, Horton JA et al (1994) Characterization, processing, and alloy design of NiAl-based shape memory alloys. Mater Charact 32:139–160. https://doi.org/10.1016/1044-5803(94)90084-1

    Article  Google Scholar 

  131. Elias CN, Lima JHC, Valiev R, Meyers MA (2008) Biomedical applications of titanium and its alloys Biological Materials Science 46–49. Biol Mater Sci 1–4

  132. Kim HY, Ikehara Y, Kim JI et al (2006) Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Mater 54:2419–2429. https://doi.org/10.1016/j.actamat.2006.01.019

    Article  Google Scholar 

  133. Chen SL, Hsieh SF, Lin HC et al (2008) Electrical discharge machining of a NiAlFe ternary shape memory alloy. J Alloys Compd 464:446–451. https://doi.org/10.1016/j.jallcom.2007.10.012

    Article  Google Scholar 

  134. Mondal A, Sahoo S, Roy P, Mitra S (2020) Vibration assisted electro-discharge machining of Ti6Al4V alloy using conical shaped tool. 74:70–74

  135. Rahman MM (2012) Modeling of machining parameters of Ti-6Al-4V for electric discharge machining: A neural network approach. Sci Res Essays 7:881–890. https://doi.org/10.5897/sre10.1116

    Article  Google Scholar 

  136. Chen S, Lian M, Xu B Study on Recast Layer Thickness of Microstructures Machined in micro-EDM with Different Electrodes. 1–20

  137. Hasçalik A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253:9007–9016. https://doi.org/10.1016/j.apsusc.2007.05.031

    Article  Google Scholar 

  138. Katiyar JK, Sharma AK, Pandey B (2018) Synthesis of iron-copper alloy using electrical discharge machining. Mater Manuf Process 33:1531–1538. https://doi.org/10.1080/10426914.2018.1424997

    Article  Google Scholar 

  139. Kao JY, Tsao CC, Wang SS, Hsu CY (2010) Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics. Int J Adv Manuf Technol 47:395–402. https://doi.org/10.1007/s00170-009-2208-3

    Article  Google Scholar 

  140. Priyadarshini M, Pal K (2018) A Comparative Study for Machining of Ti-6Al-4V Alloy for Multi-Criteria Response. J Adv Manuf Syst 17:515–531. https://doi.org/10.1142/S0219686718500294

    Article  Google Scholar 

  141. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48:557–570. https://doi.org/10.1007/s00170-009-2298-y

    Article  Google Scholar 

  142. Moses MD, Jahan MP (2015) Micro-EDM machinability of difficult-to-cut Ti-6Al-4V against soft brass. Int J Adv Manuf Technol 81:1345–1361. https://doi.org/10.1007/s00170-015-7306-9

    Article  Google Scholar 

  143. Pradhan BB, Bhattacharyya B (2008) Improvement in microhole machining accuracy by polarity changing technique for microelectrode discharge machining on Ti-6Al-4V. Proc Inst Mech Eng Part B J Eng Manuf 222:163–173. https://doi.org/10.1243/09544054JEM959

    Article  Google Scholar 

  144. Tiwary AP, Pradhan BB, Bhattacharyya B (2015) Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. Int J Adv Manuf Technol 76:151–160. https://doi.org/10.1007/s00170-013-5557-x

    Article  Google Scholar 

  145. Meena VK, Azad MS (2012) Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater Manuf Process 27:973–977. https://doi.org/10.1080/10426914.2011.610080

    Article  Google Scholar 

  146. Goiogana M, Sarasua JA, Ramos JM (2018) Ultrasonic assisted electrical discharge machining for high aspect ratio blind holes. Procedia CIRP 68:81–85. https://doi.org/10.1016/j.procir.2017.12.026

    Article  Google Scholar 

  147. Phan NH, Muthuramalingam T (2020) Multi Criteria Decision Making of Vibration Assisted EDM Process Parameters on Machining Silicon Steel Using Taguchi-DEAR Methodology. Silicon. https://doi.org/10.1007/s12633-020-00573-4

  148. Dong Y, Li G, Wang Y, Song J (2021) Study on the effective discharge energy mechanism of vertical ultrasonic vibration assisted EDM processing. Proc IMechE Part B J Eng Manuf. https://doi.org/10.1177/09544054211028527

    Article  Google Scholar 

  149. Yip WS, To S, Sun Z (2021) Hybrid ultrasonic vibration and magnetic field assisted diamond cutting of titanium alloys. J Manuf Process 62:743–752. https://doi.org/10.1016/j.jmapro.2020.12.037

    Article  Google Scholar 

  150. Wang Y, Liu Z, Shi J, et al (2020) Analysis of material removal and surface generation mechanism of ultrasonic vibration—assisted EDM. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05769-x

  151. Xing Q, Yao Z, Zhang Q (2020) Effects of processing parameters on processing performances of ultrasonic vibration-assisted micro-EDM. Int J Adv Manuf Technol

  152. Ming W, Shen F, Zhang Z, et al (2020) A comparative investigation on magnetic field – assisted EDM of magnetic and non-magnetic materials. Int J Adv Manuf Technol 109:1103–1116. https://doi.org/10.1007/s00170-020-05653-8

  153. Anthuvan RN, Krishnaraj V, Parthiban M (2020) Magnetic field-assisted electrical discharge machining of micro-holes on Ti-6Al-4V. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.06.153

    Article  Google Scholar 

  154. Shabgard MR, Gholipoor A, Mohammadpourfard M (2018) Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process , numerically and experimentally. Int J Adv Manuf Technol https://doi.org/10.1007/s00170-018-3167-3

  155. Ming W, Zhang Z, Wang S et al (2019) Comparative study of energy efficiency and environmental impact in magnetic field assisted and conventional electrical discharge machining. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.12.231

    Article  Google Scholar 

  156. Wang Y, Wang Q, Xiong W, et al (2021) Investigation on the kerf and surface formation in the magnetic field-assisted WEDM-LS based on successive discharges. Int J Adv Manuf Technol 114:841–856. https://doi.org/10.1007/s00170-021-06906-w

  157. Sivaprakasam P, Hariharan P, Gebremichael E (2020) Experimental investigations on magnetic field- assisted micro electric discharge machining of inconel alloy. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1758782

    Article  Google Scholar 

  158. Behera S, Satapathy S, Ghadai SK (2015) Parameter optimisation of powder mixed EDM of aluminium-based metal matrix composite using Taguchi and grey analysis. Int J Product Qual Manag. https://doi.org/10.1504/IJPQM.2015.071237

    Article  Google Scholar 

  159. Rouniyar AK, Shandilya P (2020) Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-05244-4

    Article  Google Scholar 

  160. Bains PS, Singh S, Payal SHS, Kaur S (2018) Magnetic Field Influence on Surface Modifications in Powder Mixed EDM. Silicon. https://doi.org/10.1007/s12633-018-9907-z

  161. Kumar S, Goud M, Suri NM (2020) An Investigation of Magnetic-field-assisted EDM by Silicon and Boron Based Dielectric of Inconel 706. Silicon. https://doi.org/10.1007/s12633-020-00776-9

  162. Ramesh S, Jenarthanan MP (2021) Optimizing the powder mixed EDM process of nickel based super alloy. Proc IMechE Part E J Process Mech Eng. https://doi.org/10.1177/09544089211002782

    Article  Google Scholar 

  163. Yan C, Zou R, Yu Z, et al (2018) Improving Machining Efficiency Methods of Micro EDM in Cold Plasma Jet. In: Procedia CIRP. pp 547–552

  164. Zou R, Yu Z, Yan C et al (2017) Micro electrical discharge machining in nitrogen plasma jet. Precis Eng. https://doi.org/10.1016/j.precisioneng.2017.08.011

    Article  Google Scholar 

  165. Asad A, Yu Z, Zou R, Zhang C (2020) Magnetic field assisted micro EDM in nitrogen plasma jet and HVAJ. Int J Mater Mech Manuf 8:1. https://doi.org/10.18178/ijmmm.2020.8.1.479

  166. Zhang C, Zou R, Yu Z, Natsu W (2020) Micro EDM aided by ultrasonic vibration in nitrogen plasma jet and mist. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05032-3

  167. Gu D, Ma C, Dai D, et al (2021) Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys Prototyp 16:S19–S38. https://doi.org/10.1080/17452759.2021.1892389

  168. Acierno A, Mostafaei A, Toman J et al (2022) Characterizing changes in grain growth, mechanical properties, and transformation properties in differently sintered and annealed binder-jet 3D printed 14M Ni–Mn–Ga magnetic shape memory alloys. Met MDPI 12:1. https://doi.org/10.3390/met12050724

    Article  Google Scholar 

  169. Wen S, Gan J, Li F et al (2021) Research status and prospect of additive manufactured nickel–titanium shape memory alloys. Mater MDPI. https://doi.org/10.3390/ma14164496

    Article  Google Scholar 

  170. Benafan O, Bigelow GS, Garg A, et al (2021) Processing and Scalability of NiTiHf High-Temperature Shape Memory Alloys. Shape Mem Superelasticity 7:109–165. https://doi.org/10.1007/s40830-020-00306-x

  171. Oliveira JP, Shen J, Escobar JD, et al (2021) Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy. Mater Des 202:1. https://doi.org/10.1016/j.matdes.2021.109533

  172. Wang C, Tan XP, Du Z et al (2019) Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. J Mater Process Tech 271:152–161. https://doi.org/10.1016/j.jmatprotec.2019.03.025

    Article  Google Scholar 

  173. Oliveira JP, Zeng Z, Berveiller S, et al (2018) Laser welding of Cu-Al-Be shape memory alloys: microstructure and mechanical properties. Mater Des https://doi.org/10.1016/j.matdes.2018.03.066

  174. Xue L, Atli KC, Picak S et al (2021) Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Mater 215:117017. https://doi.org/10.1016/j.actamat.2021.117017

    Article  Google Scholar 

  175. Ferretto I, Kim D, Della VNM et al (2021) Laser powder bed fusion of a Fe–Mn–Si shape memory alloy. Addit Manuf 46:102071. https://doi.org/10.1016/j.addma.2021.102071

    Article  Google Scholar 

  176. Resnina N, Palani IA, Belyaev S et al (2021) Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing. J Alloys Compd 851:156851. https://doi.org/10.1016/j.jallcom.2020.156851

    Article  Google Scholar 

  177. Pu Z, Du D, Wang K et al (2021) Microstructure, phase transformation behavior and tensile superelasticity of NiTi shape memory alloys fabricated by the wire-based vacuum additive manufacturing. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2021.141077

    Article  Google Scholar 

  178. Dastoor S, Dalal U, Sarvaiya J (2017) Comparative analysis of optimization techniques for optimizing the radio network parameters of next generation wireless mobile communication. IFIP Int Conf Wirel Opt Commun Networks, WOCN. https://doi.org/10.1109/WOCN.2017.8065843

    Article  Google Scholar 

  179. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: A literature review. Int J Adv Manuf Technol 46:445–464. https://doi.org/10.1007/s00170-009-2104-x

    Article  Google Scholar 

  180. Melanie M (1999) An introduction to genetic algorithms. A Bradford B MIT Press Cambridge, Massachusetts, London, Engl 162

  181. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32:12363–12379. https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  182. Saffaran A, Azadi M, Farhad M (2020) Optimization of backpropagation neural network - based models in EDM process using particle swarm optimization and simulated annealing algorithms. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-2149-1

    Article  Google Scholar 

  183. Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. Proc Evol Comput Congr 1:81–86. https://doi.org/10.1109/CEC.2001.934374

    Article  Google Scholar 

  184. Chen K, Chen K, Zhou F, Liu A (2018) Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl-Based Syst 139(23–40):23–40. https://doi.org/10.1016/j.knosys.2017.10.011

    Article  Google Scholar 

  185. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man, Cybern Part B Cybern 26:29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  186. Blum C (2005) Ant colony optimization: Introduction and recent trends. Phys Life Rev 2:353–373. https://doi.org/10.1016/j.plrev.2005.10.001

    Article  Google Scholar 

  187. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  188. Nasiraghdam H, Jadid S (2012) Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm. Sol Energy 86:3057–3071. https://doi.org/10.1016/j.solener.2012.07.014

    Article  Google Scholar 

  189. Rere LMR, Fanany MI, Arymurthy AM (2015) Simulated annealing algorithm for deep learning. Procedia Comput Sci 72:137–144. https://doi.org/10.1016/j.procs.2015.12.114

    Article  Google Scholar 

  190. Anitha J, Das R, Pradhan MK (2016) Multi-objective optimization of electrical discharge machining processes using artificial neural network. Jordan J Mech Ind Eng 10:11–18

    Google Scholar 

  191. Ross T (2010) Fuzzy logic with engineering application. Wiley

  192. Güngör Z, Arıkan F (2007) Using fuzzy decision making system to improve quality-based investment. J Intell Manuf 18:197–207. https://doi.org/10.1007/s10845-007-0016-x

    Article  Google Scholar 

  193. Mardani A, Jusoh A, Nor KMD et al (2015) Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ Res Istraz 28:516–571. https://doi.org/10.1080/1331677X.2015.1075139

    Article  Google Scholar 

  194. Debnath S, Ghosh S (2021) Experimental investigation of Electro discharge machining process by AHP-MOORA technique. J Ind Eng Decis Mak 2:1–7. https://doi.org/10.31181/jiedm200201001d

  195. Roy T, Dutta RK (2019) Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput 23:5053–5063. https://doi.org/10.1007/s00500-018-3173-2

    Article  Google Scholar 

  196. Sharma V, Prakash Misra J, Singhal P (2019) Multi-optimization of process parameters for inconel 718 while Die-Sink EDM using multi-criterion decision making methods. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1240/1/012166

    Article  Google Scholar 

  197. Gangil M, Pradhan MK (2018) Optimization the machining parameters by using VIKOR Method during EDM process of Titanium alloy. Mater Today Proc 5:7486–7495. https://doi.org/10.1016/j.matpr.2017.11.420

    Article  Google Scholar 

  198. Tiwari R, Agrawal S, Kasdekar DK (2020) Application of ELECTRE- I, II methods for EDM performance measures in manufacturing decision making. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/748/1/012015

    Article  Google Scholar 

  199. Kasdekar DK (2015) MADM approach for optimization of multiple responses in EDM of En-353 Steel. Int J Adv Sci Technol 83:59–70. https://doi.org/10.14257/ijast.2015.83.06

  200. Madić M, Radovanović M, Petković D (2015) Non-conventional machining processes selection using multi-objective optimization on the basis of ratio analysis method. J Eng Sci Technol 10:1441–1452

    Google Scholar 

  201. Awale A, Inamdar K (2020) Multi - objective optimization of high - speed turning parameters for hardened AISI S7 tool steel using grey relational analysis. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02433-z

    Article  Google Scholar 

  202. Antony J, Jiju Antony F (2001) Teaching the Taguchi method to industrial engineers. Work Study 50:141–149. https://doi.org/10.1108/00438020110391873

    Article  Google Scholar 

  203. Bradley N (2007) The response surface methodology : master of Science thesis. Indiana University South Bend

  204. Hillier MS, Hillier FS (2003) Chapter 1 Conventional optimization techniques. In: Evolutionary optimization. In: International Series in Operations Research & Management Science. Springer, Boston, MA, p 48

  205. Deb K (1995) Optimization for engineering design: algorithms and examples

  206. Savic D (2002) Single-objective vs multiobjective optimisation for integrated decision support. Int Congr Environ Model Software119 410:354–360. https://doi.org/10.1016/0005-2744(75)90237-5

  207. Schulze-Riegert R, Krosche M, Fahimuddin A, Ghedan S (2007) Multi-objective compared to single-objective optimization with application to model validation and uncertainty quantification. SPE Middle East Oil Gas Show Conf MEOS, Proc 2:827–833. https://doi.org/10.2118/105313-ms

    Article  Google Scholar 

  208. Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1:269–308

    Article  Google Scholar 

  209. Pareto V (1896) Cours D’Economie Politique. Vol I Vol II, F Rouge Lausanne

  210. Rosenberg RS (1967) Simulation of genetic populations with biochemical properties. Technical Report, University of Michigan

  211. Tran KD (2006) An improved multi-objective evolutionary algorithm with adaptable parameters. Doctoral dissertation, Nova Southeastern University

  212. Kheirikhah MM (2020) Multi-objective genetic algorithm optimization of composite sandwich plates using a higher - order theory. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02596-9

    Article  Google Scholar 

  213. Venter G (2010) Review of optimization techniques. Encycl Aerosp Eng. https://doi.org/10.1002/9780470686652.eae495

    Article  Google Scholar 

  214. Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall, New York

    Google Scholar 

  215. Turabieh H, Mafarja M, Li X (2019) Iterated feature selection algorithms with layered recurrent neural network for software fault prediction. Expert Syst Appl 122:27–42. https://doi.org/10.1016/j.eswa.2018.12.033

    Article  Google Scholar 

  216. Wang C, Zhao J, Xia E (2018) Multi-objective optimal design of a novel multi-function rescue attachment based on improved NSGA-II. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1263-9

    Article  Google Scholar 

  217. Yusoff Y, Ngadiman MS, Zain AM (2011) Overview of NSGA-II for optimizing machining process parameters. Procedia Eng 15:3978–3983

    Article  Google Scholar 

  218. Liu J, Chen X (2019) An improved NSGA-II algorithm based on crowding distance elimination strategy. Int J Comput Intell Syst 12:513–518. https://doi.org/10.2991/ijcis.d.190328.001

    Article  Google Scholar 

  219. Shivakoti I, Kibria G, Pradhan BB (2014) Investigation and fuzzy based modeling of micro-edm process during machining of micro-hole in D3 die steel material employing de-ionized water. In: 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India. pp 5–10

  220. Haykin S (2009) Neural networks and learning machines. Pearson Education Inc, Upper Saddle River, New Jersey, p 07458

    Google Scholar 

  221. Soni H, Narendranath S, Ramesh MR (2017) ANN and RSM modeling methods for predicting material removal rate and surface roughness during WEDM of Ti50Ni40Co10 shape memory alloy. Adv Model Anal A 54:435–443

    Google Scholar 

  222. Goyal A, Rahman UR, H, Ghani SAC, (2021) Experimental investigation & optimisation of wire electrical discharge machining process parameters for Ni49Ti51 shape memory alloy. J King Saud Univ - Eng Sci 33:129–135. https://doi.org/10.1016/j.jksues.2020.01.003

    Article  Google Scholar 

  223. Aruldoss M, Lakshmi TM, Venkatesan VP (2013) A survey on multi criteria decision making methods and its applications. Am J Inf Syst 1:31–43. https://doi.org/10.1291/ajis-1-1-5

    Article  Google Scholar 

  224. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83–98. https://doi.org/10.1108/JMTM-03-2014-0020

    Article  Google Scholar 

  225. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  MATH  Google Scholar 

  226. Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  227. Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156:445–455. https://doi.org/10.1016/S0377-2217(03)00020-1

    Article  MATH  Google Scholar 

  228. Rajamanickam S, Sastry JPCC (2020) Analysis of high aspect ratio small holes in rapid electrical discharge machining of superalloys using Taguchi and TOPSIS. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-2180-2

    Article  Google Scholar 

  229. Τzimopoulos C, Zormpa D, Evangelides AC (2015) Multiple Criteria Decision Making Using Vikor Method. Application in Irrigation Networks in the Thessaloniki Plain. In: Proceedings of the 14th international conference on environmental science and technology, RHodes, Greece

  230. Yazdani M, Graeml FR (2014) VIKOR and its Applications: A State-of-the-Art Survey. Int J Strateg Decis Sci 5:56–83. https://doi.org/10.4018/ijsds.2014040105

    Article  Google Scholar 

  231. Roy B (1991) The outranking approach and the foundations of electre methods. Theory Decis Acad Publ 31:49–73. https://doi.org/10.1007/BF00134132

    Article  MathSciNet  Google Scholar 

  232. Figueira JR, Greco S, Roy B, Słowiński R (2013) An Overview of ELECTRE Methods and their Recent Extensions. J Multi-Criteria Decis Anal 20:61–85. https://doi.org/10.1002/mcda.1482

    Article  Google Scholar 

  233. Brans JP, Vincke P (1985) A preference ranking organisation method. The PROMETHEE method for Multiple Criteria Decision-Making. Inst Manag Sci 31:647–656. https://doi.org/10.1287/mnsc.31.6.647

    Article  MathSciNet  MATH  Google Scholar 

  234. Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) PROMETHEE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 200:198–215. https://doi.org/10.1016/j.ejor.2009.01.021

    Article  MATH  Google Scholar 

  235. Athawale VM, Chatterjee P, Chakraborty S (2012) Decision making for facility location selection using PROMETHEE II method. Int J Ind Syst Eng 11:16–30. https://doi.org/10.1504/IJISE.2012.046652

    Article  Google Scholar 

  236. Salehi A, Izadikhah M (2014) A novel method to extend SAW for decision-making problems with interval data. Decis Sci Lett 3:225–236. https://doi.org/10.5267/j.dsl.2013.11.001

    Article  Google Scholar 

  237. Khairul SM, Utama Siahaan AP (2016) Decision support system in selecting the appropriate laptop using simple additive weighting. Int J Recent Trends Eng Res 2:215–222. https://doi.org/10.31227/osf.io/3t9re

    Article  Google Scholar 

  238. Aminudin N, Sundari E et al (2018) Weighted product and its application to measure employee performance. Int J Eng Technol 7:102–108. https://doi.org/10.1419/ijet.v7i2.26.14362

    Article  Google Scholar 

  239. Ahsan M, Indawati N (2019) Implementation weighted product method to determine multiple intelligence child. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1375/1/012038

    Article  Google Scholar 

  240. Chen C (2020) A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS. Entropy MDPI Journals 23:22259

    Google Scholar 

  241. Zhu Y, Tian D, Yan F (2020) Effectiveness of entropy weight method in decision-making. Math Probl Eng. https://doi.org/10.1155/2020/3564835

    Article  Google Scholar 

  242. Saha TRPA, Dey HMV (2019) Multi-objective optimization of some correlated process parameters in EDM of Inconel 800 using a hybrid approach. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1805-9

    Article  Google Scholar 

  243. Aytaç Adalı E, Tuş Işık A (2017) The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem. J Ind Eng Int 13:229–237. https://doi.org/10.1007/s40092-016-0175-5

    Article  Google Scholar 

  244. Julong D (1989) Introduction to grey systems theory. J Grey Syst 1:1–24. https://doi.org/10.1007/978-3-642-16158-2_1

    Article  MathSciNet  MATH  Google Scholar 

  245. Singh AK, Patowari PK, Chandrasekaran M (2020) Experimental study on drilling micro-hole through micro-EDM and optimization of multiple performance characteristics. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02595-w

    Article  Google Scholar 

  246. Singh AK, Patowari PK, Deshpande NV (2019) Analysis of micro-rods machined using reverse micro-EDM. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1519-4

    Article  Google Scholar 

  247. Singh R, Abou S, Hussain I et al (2020) Modelling and optimizing performance parameters in the wire - electro discharge machining of Al5083/B 4 C composite by multi - objective response surface methodology. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02418-y

    Article  Google Scholar 

  248. Matthew Carlyle W, Montgomery DC, Runger GC (2000) Optimization problems and methods in quality control and improvement. J Qual Technol 32:1–17. https://doi.org/10.1080/00224065.2000.11979963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Singh, A.K., Paul, B. et al. Machining of shape-memory alloys using electrical discharge machining with an elaborate study of optimization approaches: a review. J Braz. Soc. Mech. Sci. Eng. 44, 557 (2022). https://doi.org/10.1007/s40430-022-03826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03826-y

Keywords

Navigation