A Study on the Die-Sinking Micro-Electrical Discharge Machining of EN-24 Die Steel Using Various Electrode Materials

Article Preview

Abstract:

Micro-EDM is an extensively used machining process for the fabrication of micro-holes with various advantages resulting from its characteristics of non-contact and thermal process. In this micro-fabrication technique, processing parameters greatly affect processing efficiency and stability. An experimental investigation on die-sinking Micro-EDM of EN-24 die steel using various electrodes such as tungsten, copper, copper tungsten and silver tungsten has been carried out. The present study aims to assess the quality and accuracy of the produced micro-holes, machining stability, material removal rate (MRR), tool wear ratio (TWR), surface roughness (Ra), Heat affected zone (HAZ) and overcut (OC). In addition, the influence of gap voltage, capacitance and discharge energy on the performance of the process has also been investigated. Experimental results proved that the overall performance of the copper electrode is found to be optimum with high MRR, thin HAZ though copper shows higher TWR, surface roughness and overcut.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

73-82

Citation:

Online since:

July 2014

Export:

Price:

* - Corresponding Author

[1] H.S. Lim, Y.S. Wong, M. Rahman, M.K.E. Lee, A study on the machining of high-aspect ratio micro-structures using micro-EDM, J. Mater. Process. Tech. 140 (2003) 318-25.

DOI: 10.1016/s0924-0136(03)00760-x

Google Scholar

[2] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials, J. Mater. Process. Tech. 209 (2009) 3956–3967.

DOI: 10.1016/j.jmatprotec.2008.09.015

Google Scholar

[3] A. Muttamara, P. Janmanee, Y. Fukuzawa, A Study of Micro–EDM on Silicon Nitride Using Electrode Materials, Int. Trans. J. Eng. Manag. Sci. Tech. 1 (2010) 1–7.

Google Scholar

[4] J.A. Sanchez, I. Cabanes, L.N. Lopez de Lacalle, A. Lamikiz, Development of optimum electro discharge machining technology for advanced ceramics, Int. J. Adv. Manuf. Tech. 18 (2001)897-905.

DOI: 10.1007/pl00003958

Google Scholar

[5] S. Singh, S. Maheshwari, P.C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials, J. Mater. Process. Tech. 149 (2004) 272–277.

DOI: 10.1016/j.jmatprotec.2003.11.046

Google Scholar

[6] H.S. Payal, R. Choudhary, S. Singh, Analysis of electro discharge machined surfaces of EN-31 tool steel, J. Sci. Ind. Res. India. 67(2008)1072-1077.

Google Scholar

[7] S.H. Yeo, P.C. Tan, E. Aligiri, S.B. Tor, N.H. Loh, Processing of Zirconium-Based Bulk Metallic Glass (BMG) Using Micro Electrical Discharge Machining (Micro-EDM), Mater. Manuf. Proce. 24 (2009) 1242-1248.

DOI: 10.1080/10426910903129661

Google Scholar

[8] T. Masuzawa, State of the Art of micromachining, Ann. CIRP Manuf. Tech. 49 (2000) 473–488.

DOI: 10.1016/s0007-8506(07)63451-9

Google Scholar

[9] Q.H. Zhang, J.H. Zhang, S.F. Ren, Z.W. Niu, X. Ai, A theoretical model of surface roughness in ultrasonic vibration assisted electrical discharge machining in gas, Int. J Manuf. Tech. Manag. 7(2/3/4) (2005) 381–390.

DOI: 10.1504/ijmtm.2005.006840

Google Scholar

[10] C. Cogun, B. Kocabas, A. Ozgedik, Experimental and theoretical investigation of workpiece surface profiles in electrical discharge machining (EDM), J. Fac. Eng. Archit. Gazi Univ. 19(1) (20004) 97–106.

Google Scholar

[11] S. Das, M. Klotz, F. Klocke, EDM simulation finite element based calculation of deformation, microstructure and residual stresses, J. Mater. Process. Tech. 142 (2003) 434–451.

DOI: 10.1016/s0924-0136(03)00624-1

Google Scholar

[12] B. Ekmekci, O. Elkoca, A.E. Tekkaya, Residual stress state and hardness depth in electric discharge machining: de-ionized water as dielectric liquid, Mach. Sci. Technol. 9 (2005a) 39–61.

DOI: 10.1081/mst-200051244

Google Scholar

[13] B. Ekmekci, O. Elkoca, A.E. Tekkaya, A semi empirical approach for residual stresses in electric discharge machining, Int. J. Mach. Tools Manuf. 46 (2005b) 858–868.

DOI: 10.1016/j.ijmachtools.2005.07.020

Google Scholar

[14] M.R. Shabgard, M. Seyedzavvar, S.N.B. Oliaer, A. Ivanov, A numerical method for predicting depth of heat affected zone in EDM process for AISI H13 tool steel, J. Sci. Ind. Res. India. 70 (2011) 493-499.

Google Scholar

[15] S.H. Lee, X.P. Li, Study of the surface integrity of the machined workpiece in the EDM of WC, J. Mater. Process. Tech. 139 (2003) 315–321.

Google Scholar

[16] H.S. Liu, B.H. Yan, F.Y. Huang, K.H. Qiu, A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications, J. Mater. Process. Tech. 169, (2004) 418-426.

DOI: 10.1016/j.jmatprotec.2005.04.084

Google Scholar

[17] G. Paul, S. Roy, S. Sarkar, Naga Hanumaiah, S. Mitra, Investigations on influence of process variables on crater dimensions in micro-EDM of γ-titanium aluminide alloy in dry and oil dielectric media, Int. J. Adv. Manuf. Tech. 65(5-8)(2013).

DOI: 10.1007/s00170-012-4235-8

Google Scholar

[18] D.T. Pham, A. Ivanov, S. Bigot, K. Popov, S. Dimov, An investigation of tube and rod electrode wear in micro EDM drilling, Int. J. Adv. Manuf. Tech. 33 (2007)103–109.

DOI: 10.1007/s00170-006-0639-7

Google Scholar

[19] B.B. Pradhan, M. Masanata, B.R. Sarkar, B.B. Bhattacharyya, Investigation of electro-discharge micro-machining of Titanium super alloy, Int. J. Adv. Manuf. Tech. 41(2009)1094-1106.

DOI: 10.1007/s00170-008-1561-y

Google Scholar

[20] J. Mathew, V.S. Sooraj, K.P. Somashekhar, S.R. Nuvvula, N. Ramachandran, Effect of work material and machining conditions on the efficiency and accuracy of micro electric discharge drilling, Int. J. Abrasive Tech. 2(3) (2009) 279-298.

DOI: 10.1504/ijat.2009.024399

Google Scholar