Skip to main content
Log in

Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chronic neuropathic pain after a spinal cord injury (SCI) continues to be a complex condition that is difficult to manage due to multiple underlying pathophysiological mechanisms and the association with psychosocial factors. Determining the individual contribution of each of these factors is currently not a realistic goal; however, focusing on the primary mechanisms may be more feasible. One approach used to uncover underlying mechanisms includes phenotyping using pain symptoms and somatosensory function. However, this approach does not consider cognitive and psychosocial mechanisms that may also significantly contribute to the pain experience and impact treatment outcomes. Indeed, clinical experience supports that a combination of self-management, non-pharmacological, and pharmacological approaches is needed to optimally manage pain in this population. This article will provide a broad updated summary integrating the clinical aspects of SCI-related neuropathic pain, potential pain mechanisms, evidence-based treatment recommendations, neuropathic pain phenotypes and brain biomarkers, psychosocial factors, and progress regarding how defining neuropathic pain phenotypes and other surrogate measures in the neuropathic pain field may lead to targeted treatments for neuropathic pain after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103:249–57. https://doi.org/10.1016/S0304-3959(02)00452-9.

    Article  PubMed  Google Scholar 

  2. Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sørensen JC, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014;15:40–8. https://doi.org/10.1016/j.jpain.2013.09.008.

    Article  PubMed  Google Scholar 

  3. Cruz-Almeida Y, Martinez-Arizala A, Widerstrom-Noga E. Chronicity of pain associated with spinal cord injury: a longitudinal analysis. J Rehabil Res Dev. 2005;42:585. https://doi.org/10.1682/JRRD.2005.02.0045.

    Article  PubMed  Google Scholar 

  4. Widerström-Noga EG, Felipe-Cuervo E, Yezierski RP. Chronic pain after spinal injury: interference with sleep and daily activities. Arch Phys Med Rehabil. 2001;82:1571–7. https://doi.org/10.1053/apmr.2001.26068.

    Article  PubMed  Google Scholar 

  5. Rubinelli S, Glässel A, Brach M. From the person’s perspective: perceived problems in functioning among individuals with spinal cord injury in Switzerland. J Rehabil Med. 2016;48:235–43. https://doi.org/10.2340/16501977-2060.

    Article  PubMed  Google Scholar 

  6. Widerstrom-Noga E, Anderson KD, Perez S, Martinez-Arizala A, Calle-Coule L, Fleming L. Barriers and facilitators to optimal neuropathic pain management: SCI consumer, significant other, and health care provider perspectives. Pain Med. 2020;21:2913–24. https://doi.org/10.1093/pm/pnaa058.

    Article  PubMed  Google Scholar 

  7. Widerström-Noga EG, Turk DC. Exacerbation of chronic pain following spinal cord injury. J Neurotrauma. 2004;21:1384–95. https://doi.org/10.1089/neu.2004.21.1384.

    Article  PubMed  Google Scholar 

  8. Andresen SR, Biering-Sørensen F, Hagen EM, Nielsen JF, Bach FW, Finnerup NB. Pain, spasticity and quality of life in individuals with traumatic spinal cord injury in Denmark. Spinal Cord. 2016;54:973–9. https://doi.org/10.1038/sc.2016.46.

    Article  CAS  PubMed  Google Scholar 

  9. Guy SD, Mehta S, Casalino A, Côté I, Kras-Dupuis A, Moulin DE, et al. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: recommendations for treatment. Spinal Cord. 2016;54(Suppl 1):S14-23. https://doi.org/10.1038/sc.2016.90.

    Article  PubMed  Google Scholar 

  10. Nielsen SD, Faaborg PM, Christensen P, Krogh K, Finnerup NB. Chronic abdominal pain in long-term spinal cord injury: a follow-up study. Spinal Cord. 2017;55:290–3. https://doi.org/10.1038/sc.2016.124.

    Article  CAS  PubMed  Google Scholar 

  11. Edwards RR, Dworkin RH, Sullivan MD, Turk DC, Wasan AD. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain. 2016;17:T70-92. https://doi.org/10.1016/j.jpain.2016.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Turk DC, Fillingim RB, Ohrbach R, Patel KV. Assessment of psychosocial and functional impact of chronic pain. J Pain. 2016;17:T21-49. https://doi.org/10.1016/j.jpain.2016.02.006.

    Article  PubMed  Google Scholar 

  13. Widerström-Noga EG, Felix ER, Cruz-Almeida Y, Turk DC. Psychosocial subgroups in persons with spinal cord injuries and chronic pain. Arch Phys Med Rehabil. 2007;88:1628–35. https://doi.org/10.1016/j.apmr.2007.09.013.

    Article  PubMed  Google Scholar 

  14. Molton I, Cook KF, Smith AE, Amtmann D, Chen W-H, Jensen MP. Prevalence and impact of pain in adults aging with a physical disability: comparison to a US general population sample. Clin J Pain. 2014;30:307. https://doi.org/10.1097/AJP.0b013e31829e9bca.

    Article  PubMed  Google Scholar 

  15. Craig A, Guest R, Tran Y, Middleton J. Cognitive impairment and mood states after spinal cord injury. J Neurotrauma. 2017;34:1156–63. https://doi.org/10.1089/neu.2016.4632.

    Article  PubMed  Google Scholar 

  16. Bryce TN, Biering-Sørensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: Part I. Background and description. Spinal Cord. 2012;50:413–7. https://doi.org/10.1038/sc.2011.156.

    Article  CAS  PubMed  Google Scholar 

  17. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DLH, Bouhassira D, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016;157:1599–606. https://doi.org/10.1097/j.pain.0000000000000492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Treede R-D, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5. https://doi.org/10.1212/01.wnl.0000282763.29778.59.

    Article  CAS  PubMed  Google Scholar 

  19. Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Pain symptom profiles in persons with spinal cord injury. Pain Med. 2009;10:1246–59. https://doi.org/10.1111/j.1526-4637.2009.00713.x.

    Article  PubMed  Google Scholar 

  20. Hallström H, Norrbrink C. Screening tools for neuropathic pain: can they be of use in individuals with spinal cord injury? PAIN®. 2011;152:772–9. https://doi.org/10.1016/j.pain.2010.11.019.

  21. Bryce TN, Richards JS, Bombardier CH, Dijkers MP, Fann JR, Brooks L, et al. Screening for neuropathic pain after spinal cord injury with the Spinal Cord Injury Pain Instrument (SCIPI): a preliminary validation study. Spinal Cord. 2014;52:407–12. https://doi.org/10.1038/sc.2014.21.

    Article  CAS  PubMed  Google Scholar 

  22. Finnerup NB, Baastrup C. Spinal cord injury pain: mechanisms and management. Curr Pain Headache Rep. 2012;16:207–16. https://doi.org/10.1007/s11916-012-0259-x.

    Article  PubMed  Google Scholar 

  23. Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur J Pain. 2017;21:29–44. https://doi.org/10.1002/ejp.905.

    Article  CAS  PubMed  Google Scholar 

  24. Wong ML, Fleming L, Robayo LE, Widerström-Noga E. Utility of the Neuropathic Pain Symptom Inventory in people with spinal cord injury. Spinal Cord. 2020;58:35–42. https://doi.org/10.1038/s41393-019-0338-5.

    Article  PubMed  Google Scholar 

  25. Rosner J, Negraeff M, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong J-M, et al. Characterization of hyperacute neuropathic pain after spinal cord injury: a prospective study. J Pain. 2022;23:89–97. https://doi.org/10.1016/j.jpain.2021.06.013.

    Article  PubMed  Google Scholar 

  26. Siracusa R, Paola RD, Cuzzocrea S, Impellizzeri D. Fibromyalgia: pathogenesis, mechanisms, diagnosis and treatment options update. Int J Mol Sci. 2021;22(8):3891. https://doi.org/10.3390/ijms22083891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van den Berg C, de Bree PN, Huygen FJPM, Tiemensma J. Glucocorticoid treatment in patients with complex regional pain syndrome: a systematic review. Eur J Pain. 2022;26(10):2009–35. https://doi.org/10.1002/ejp.2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer EA, Ryu HJ, Bhatt RR. The neurobiology of irritable bowel syndrome. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-01972-w.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Widerström-Noga E, Anderson KD, Perez S, Hunter JP, Martinez-Arizala A, Adcock JP, et al. Living with chronic pain after spinal cord injury: a mixed-methods study. Arch Phys Med Rehabil. 2017;98:856–65. https://doi.org/10.1016/j.apmr.2016.10.018.

    Article  PubMed  Google Scholar 

  30. Widerström-Noga E, Biering-Sørensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, et al. The international spinal cord injury pain basic data set (version 2.0). Spinal Cord. 2014;52:282–6. https://doi.org/10.1038/sc.2014.4.

  31. Vardeh D, Mannion RJ, Woolf CJ. Toward a mechanism-based approach to pain diagnosis. J Pain. 2016;17:T50-69. https://doi.org/10.1016/j.jpain.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 2006;26:4308–17. https://doi.org/10.1523/JNEUROSCI.0003-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gwak YS, Hulsebosch CE. Remote astrocytic and microglial activation modulates neuronal hyperexcitability and below-level neuropathic pain after spinal injury in rat. Neuroscience. 2009;161:895–903. https://doi.org/10.1016/j.neuroscience.2009.03.055.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang T, Sun K, Shen W, Qi L, Yin W, Wang L. SOCS1 regulates neuropathic pain by inhibiting neuronal sensitization and glial activation in mouse spinal cord. Brain Res Bull. 2016;124:231–7. https://doi.org/10.1016/j.brainresbull.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao P, Waxman SG, Hains BC. Extracellular signal-regulated kinase-regulated microglia–neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci. 2007;27:2357–68. https://doi.org/10.1523/JNEUROSCI.0138-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine–cysteine chemokine ligand 21. J Neurosci. 2007;27:8893–902. https://doi.org/10.1523/JNEUROSCI.2209-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown EV, Falnikar A, Heinsinger N, Cheng L, Andrews CE, DeMarco M, et al. Cervical spinal cord injury-induced neuropathic pain in male mice is associated with a persistent pro-inflammatory macrophage/microglial response in the superficial dorsal horn. Exp Neurol. 2021;343:113757. https://doi.org/10.1016/j.expneurol.2021.113757.

  38. Gattlen C, Deftu A-F, Tonello R, Ling Y, Berta T, Ristoiu V, et al. The inhibition of Kir2.1 potassium channels depolarizes spinal microglial cells, reduces their proliferation, and attenuates neuropathic pain. Glia. 2020;68:2119–35. https://doi.org/10.1002/glia.23831.

  39. Yuan X, Han S, Manyande A, Gao F, Wang J, Zhang W, et al. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain. 2023;27:289–302. https://doi.org/10.1002/ejp.2059.

  40. Bobinski F, Teixeira JM, Sluka KA, Santos ARS. IL-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain. 2018;159:437. https://doi.org/10.1097/j.pain.0000000000001109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boroujerdi A, Zeng J, Sharp K, Kim D, Steward O, Luo ZD. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. PAIN®. 2011;152:649–55. https://doi.org/10.1016/j.pain.2010.12.014.

  42. Geng S-J, Liao F-F, Dang W-H, Ding X, Liu X-D, Cai J, et al. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation. Exp Neurol. 2010;222:256–66. https://doi.org/10.1016/j.expneurol.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  43. Hasbargen T, Ahmed MM, Miranpuri G, Li L, Kahle KT, Resnick D, et al. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci. 2010;1198:168–72. https://doi.org/10.1111/j.1749-6632.2010.05462.x.

    Article  CAS  PubMed  Google Scholar 

  44. Knerlich-Lukoschus F, Noack M, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J. Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions. J Neurotrauma. 2011;28:619–34. https://doi.org/10.1089/neu.2010.1652.

    Article  PubMed  Google Scholar 

  45. Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma. 2010;27:729–37. https://doi.org/10.1089/neu.2009.1166.

    Article  PubMed  Google Scholar 

  46. Voulalas PJ, Ji Y, Jiang L, Asgar J, Ro JY, Masri R. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion. Neuroscience. 2017;343:94–105. https://doi.org/10.1016/j.neuroscience.2016.11.040.

    Article  CAS  PubMed  Google Scholar 

  47. Sandhir R, Gregory E, He Y-Y, Berman NEJ. Upregulation of inflammatory mediators in a model of chronic pain after spinal cord injury. Neurochem Res. 2011;36:856–62. https://doi.org/10.1007/s11064-011-0414-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain. 2018;159:583–94. https://doi.org/10.1097/j.pain.0000000000001099.

    Article  CAS  PubMed  Google Scholar 

  49. Baron R, Dickenson AH, Calvo M, Dib-Hajj SD, Bennett DL. Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol. 2023;19:53–64. https://doi.org/10.1038/s41582-022-00741-7.

    Article  CAS  PubMed  Google Scholar 

  50. Edwards RR, Dworkin RH, Turk DC, Angst MS, Dionne R, Freeman R, et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain. 2016;157:1851–71. https://doi.org/10.1097/j.pain.0000000000000602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101:259–301. https://doi.org/10.1152/physrev.00045.2019.

    Article  CAS  PubMed  Google Scholar 

  52. Guy SD, Mehta S, Harvey D, Lau B, Middleton JW, O’Connell C, et al. The CanPain SCI clinical practice guideline for rehabilitation management of neuropathic pain after spinal cord: recommendations for model systems of care. Spinal Cord. 2016;54:S24–7. https://doi.org/10.1038/sc.2016.91.

    Article  PubMed  Google Scholar 

  53. Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (Oral, transdermal, intravenous). Ann Phys Rehabil Med 2009;52:124–41. https://doi.org/10.1016/j.rehab.2008.12.011.

  54. Siddall PJ, Middleton JW. A proposed algorithm for the management of pain following spinal cord injury. Spinal Cord. 2006;44:67–77. https://doi.org/10.1038/sj.sc.3101824.

    Article  CAS  PubMed  Google Scholar 

  55. Loh E, Mirkowski M, Agudelo AR, Allison DJ, Benton B, Bryce TN, et al. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord injury: 2021 update. Spinal Cord. 2022;60:548–66. https://doi.org/10.1038/s41393-021-00744-z.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73. https://doi.org/10.1016/S1474-4422(14)70251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience. 2016;338:183–206. https://doi.org/10.1016/j.neuroscience.2016.06.057.

    Article  CAS  PubMed  Google Scholar 

  58. Xiao W, Boroujerdi A, Bennett GJ, Luo ZD. Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience. 2007;144:714–20. https://doi.org/10.1016/j.neuroscience.2006.09.044.

    Article  CAS  PubMed  Google Scholar 

  59. Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, et al. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J Neurosci. 2009;29:4076–88. https://doi.org/10.1523/JNEUROSCI.0356-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morimoto S, Ito M, Oda S, Sugiyama A, Kuroda M, Adachi-Akahane S. Spinal mechanism underlying the antiallodynic effect of gabapentin studied in the mouse spinal nerve ligation model. J Pharmacol Sci. 2012;118:455–66. https://doi.org/10.1254/jphs.11102FP.

    Article  CAS  PubMed  Google Scholar 

  61. Kumar N, Laferriere A, Yu JSC, Leavitt A, Coderre TJ. Evidence that pregabalin reduces neuropathic pain by inhibiting the spinal release of glutamate. J Neurochem. 2010;113:552–61. https://doi.org/10.1111/j.1471-4159.2010.06625.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Omori Y, Kagaya K, Enomoto R, Sasaki A, Andoh T, Nojima H, et al. A mouse model of sural nerve injury–induced neuropathy: Gabapentin inhibits pain-related behaviors and the hyperactivity of wide-dynamic range neurons in the dorsal horn. J Pharmacol Sci. 2009;109:532–9. https://doi.org/10.1254/jphs.08319FP.

    Article  CAS  PubMed  Google Scholar 

  63. Ding L, Cai J, Guo X-Y, Meng X-L, Xing G-G. The antiallodynic action of pregabalin may depend on the suppression of spinal neuronal hyperexcitability in rats with spared nerve injury. Pain Res Manag. 2014;19:205–11. https://doi.org/10.1155/2014/623830.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hayashida K, DeGoes S, Curry R, Eisenach JC. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology. 2007;106:557–62. https://doi.org/10.1097/00000542-200703000-00021.

    Article  CAS  PubMed  Google Scholar 

  65. Suto T, Eisenach JC, Hayashida K. Peripheral nerve injury and gabapentin, but not their combination, impair attentional behavior via direct effects on noradrenergic signaling in the brain. PAIN®. 2014;155:1935–42. https://doi.org/10.1016/j.pain.2014.05.014.

  66. Lin H-C, Huang Y-H, Chao T-HH, Lin W-Y, Sun W-Z, Yen C-T. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain. 2014;10:1744-8069-10–63. https://doi.org/10.1186/1744-8069-10-63.

  67. Kremer M, Yalcin I, Nexon L, Wurtz X, Ceredig RA, Daniel D, et al. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain. 2016;12:174480691663347. https://doi.org/10.1177/1744806916633477.

    Article  CAS  Google Scholar 

  68. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain. 2009;13:807–11. https://doi.org/10.1016/j.ejpain.2008.09.010.

    Article  CAS  PubMed  Google Scholar 

  69. Siddall PJ, Cousins MJ, Otte A, Griesing T, Chambers R, Murphy TK. Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology. 2006;67:1792–800. https://doi.org/10.1212/01.wnl.0000244422.45278.ff.

    Article  CAS  PubMed  Google Scholar 

  70. Vranken JH, Dijkgraaf MGW, Kruis MR, van der Vegt MH, Hollmann MW, Heesen M. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. PAIN®. 2008;136:150–7. https://doi.org/10.1016/j.pain.2007.06.033.

  71. Cardenas DD, Nieshoff EC, Suda K, Goto S, Sanin L, Kaneko T, et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology. 2013;80:533–9. https://doi.org/10.1212/WNL.0b013e318281546b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaydok E, Levendoglu F, Ozerbil MO, Karahan AY. Comparison of the efficacy of gabapentin and pregabalin for neuropathic pain in patients with spinal cord injury: a crossover study. Acta Medica Mediterr. 2014.

  73. Yilmaz B, Yasar E, Koroglu Omac O, Goktepe AS, Tan AK. Gabapentin vs. pregabalin for the treatment of neuropathic pain in patients with spinal cord injury: a crossover study. Türkiye Fiz Tip Ve Rehabil Derg. 2015;61:1–5. https://doi.org/10.5152/tftrd.2015.79069.

  74. Min K, Oh Y, Lee S-H, Ryu JS. Symptom-based treatment of neuropathic pain in spinal cord-injured patients: a randomized crossover clinical trial. Am J Phys Med Rehabil. 2016;95:330. https://doi.org/10.1097/PHM.0000000000000382.

    Article  PubMed  Google Scholar 

  75. Mehta S, McIntyre A, Dijkers M, Loh E, Teasell RW. Gabapentinoids Are effective in decreasing neuropathic pain and other secondary outcomes after spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2014;95:2180–6. https://doi.org/10.1016/j.apmr.2014.06.010.

    Article  PubMed  Google Scholar 

  76. Putzke JD, Richards JS, Kezar L, Hicken BL, Ness TJ. Long-term use of gabapentin for treatment of pain after traumatic spinal cord injury. Clin J Pain. 2002;18:116.

    Article  PubMed  Google Scholar 

  77. To T-P, Lim TC, Hill ST, Frauman AG, Cooper N, Kirsa SW, et al. Gabapentin for neuropathic pain following spinal cord injury. Spinal Cord. 2002;40:282–5. https://doi.org/10.1038/sj.sc.3101300.

    Article  PubMed  Google Scholar 

  78. Tai Q, Kirshblum S, Chen B, Millis S, Johnston M, DeLisa JA. Gabapentin in the treatment of neuropathic pain after spinal cord injury: a prospective, randomized, double-blind, crossover trial. J Spinal Cord Med. 2002;25:100–5. https://doi.org/10.1080/10790268.2002.11753609.

    Article  PubMed  Google Scholar 

  79. Levendoglu F, Ögün CÖ, Özerbil Ö, Ögün TC, Ugurlu H. Gabapentin is a first line drug for the treatment of neuropathic pain in spinal cord injury. Spine. 2004;29:743. https://doi.org/10.1097/01.BRS.0000112068.16108.3A.

    Article  PubMed  Google Scholar 

  80. Rintala DH, Holmes SA, Courtade D, Fiess RN, Tastard LV, Loubser PG. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil. 2007;88:1547–60. https://doi.org/10.1016/j.apmr.2007.07.038.

    Article  PubMed  Google Scholar 

  81. Yalcin I, Choucair-Jaafar N, Benbouzid M, Tessier L-H, Muller A, Hein L, et al. β2-adrenoceptors are critical for antidepressant treatment of neuropathic pain. Ann Neurol. 2009;65:218–25. https://doi.org/10.1002/ana.21542.

    Article  CAS  PubMed  Google Scholar 

  82. Hughes S, Hickey L, Donaldson LF, Lumb BM, Pickering AE. Intrathecal reboxetine suppresses evoked and ongoing neuropathic pain behaviours by restoring spinal noradrenergic inhibitory tone. Pain. 2015;156:328. https://doi.org/10.1097/01.j.pain.0000460313.73358.31.

    Article  CAS  PubMed  Google Scholar 

  83. Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience. 2016;338:93–113. https://doi.org/10.1016/j.neuroscience.2016.05.057.

    Article  CAS  PubMed  Google Scholar 

  84. Megumu Y, Hidemasa F. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci. 2006;101:107–17. https://doi.org/10.1254/jphs.CRJ06008X.

    Article  CAS  Google Scholar 

  85. Üçel Uİ, Can ÖD, Demir Özkay Ü, Öztürk Y. Antihyperalgesic and antiallodynic effects of mianserin on diabetic neuropathic pain: a study on mechanism of action. Eur J Pharmacol. 2015;756:92–106. https://doi.org/10.1016/j.ejphar.2015.02.048.

    Article  CAS  PubMed  Google Scholar 

  86. McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363:543–6. https://doi.org/10.1038/363543a0.

    Article  CAS  PubMed  Google Scholar 

  87. Jefferies K. Treatment of neuropathic pain. Semin Neurol. 2010;30:425–32. https://doi.org/10.1055/s-0030-1267286.

    Article  PubMed  Google Scholar 

  88. Cardenas DD, Warms CA, Turner JA, Marshall H, Brooke MM, Loeser JD. Efficacy of amitriptyline for relief of pain in spinal cord injury: results of a randomized controlled trial. Pain. 2002;96:365–73. https://doi.org/10.1016/S0304-3959(01)00483-3.

    Article  CAS  PubMed  Google Scholar 

  89. Agarwal N, Joshi M. Effectiveness of amitriptyline and lamotrigine in traumatic spinal cord injury-induced neuropathic pain: a randomized longitudinal comparative study. Spinal Cord. 2017;55:126–30. https://doi.org/10.1038/sc.2016.123.

    Article  CAS  PubMed  Google Scholar 

  90. Norrbrink C, Lundeberg T. Tramadol in neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled trial. Clin J Pain. 2009;25:177. https://doi.org/10.1097/AJP.0b013e31818a744d.

    Article  PubMed  Google Scholar 

  91. Finnerup NB, Sindrup SH, Bach FW, Johannesen IL, Jensen TS. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain. 2002;96:375–83. https://doi.org/10.1016/S0304-3959(01)00484-5.

    Article  CAS  PubMed  Google Scholar 

  92. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5:553–64. https://doi.org/10.1038/nrn1430.

    Article  CAS  PubMed  Google Scholar 

  93. Han Z-A, Song DH, Oh H-M, Chung ME. Botulinum toxin type A for neuropathic pain in patients with spinal cord injury. Ann Neurol. 2016;79:569–78. https://doi.org/10.1002/ana.24605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fregni F, Gimenes R, Valle AC, Ferreira MJL, Rocha RR, Natalle L, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–98. https://doi.org/10.1002/art.22195.

    Article  PubMed  Google Scholar 

  95. Ngernyam N, Jensen MP, Arayawichanon P, Auvichayapat N, Tiamkao S, Janjarasjitt S, et al. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126:382–90. https://doi.org/10.1016/j.clinph.2014.05.034.

    Article  PubMed  Google Scholar 

  96. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133:2565–77. https://doi.org/10.1093/brain/awq184.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mehta S, McIntyre A, Guy S, Teasell RW, Loh E. Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord. 2015;53:780–5. https://doi.org/10.1038/sc.2015.118.

    Article  CAS  PubMed  Google Scholar 

  98. Wilsey B, Marcotte TD, Deutsch R, Zhao H, Prasad H, Phan A. An exploratory human laboratory experiment evaluating vaporized cannabis in the treatment of neuropathic pain from spinal cord injury and disease. J Pain. 2016;17:982–1000. https://doi.org/10.1016/j.jpain.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rintala DH, Fiess RN, Tan G, Holmes SA, Bruel BM. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil. 2010;89:840. https://doi.org/10.1097/PHM.0b013e3181f1c4ec.

    Article  PubMed  Google Scholar 

  100. Davis R, Lentini R. Transcutaneous nerve stimulation for treatment of pain in patients with spinal cord injury. Surg Neurol. 1975;4:100–1.

    CAS  PubMed  Google Scholar 

  101. Barrera-Chacon JM, Mendez-Suarez JL, Jáuregui-Abrisqueta ML, Palazon R, Barbara-Bataller E, García-Obrero I. Oxycodone improves pain control and quality of life in anticonvulsant-pretreated spinal cord-injured patients with neuropathic pain. Spinal Cord. 2011;49:36–42. https://doi.org/10.1038/sc.2010.101.

    Article  CAS  PubMed  Google Scholar 

  102. Falci S, Best L, Bayles R, Lammertse D, Starnes C. Dorsal root entry zone microcoagulation for spinal cord injury—related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J Neurosurg Spine. 2002;97:193–200. https://doi.org/10.3171/spi.2002.97.2.0193.

    Article  Google Scholar 

  103. Chun H-J, Kim YS, Yi H-J. A modified microsurgical DREZotomy procedure for refractory neuropathic pain. World Neurosurg. 2011;75:551–7. https://doi.org/10.1016/j.wneu.2010.12.005.

    Article  PubMed  Google Scholar 

  104. Spaić M, Marković N, Tadić R. Microsurgical DREZotomy for pain of spinal cord and cauda equina injury origin: clinical characteristics of pain and implications for surgery in a series of 26 patients. Acta Neurochir (Wien). 2002;144:453–62. https://doi.org/10.1007/s007010200066.

    Article  PubMed  Google Scholar 

  105. Chivukula S, Tempel ZJ, Chen C-J, Shin SS, Gande AV, Moossy JJ. Spinal and nucleus caudalis dorsal root entry zone lesioning for chronic pain: efficacy and outcomes. World Neurosurg. 2015;84:494–504. https://doi.org/10.1016/j.wneu.2015.04.025.

    Article  PubMed  Google Scholar 

  106. Sindou M, Mertens P, Wael M. Microsurgical DREZotomy for pain due to spinal cord and/or cauda equina injuries: long-term results in a series of 44 patients. Pain. 2001;92:159–71. https://doi.org/10.1016/S0304-3959(00)00487-5.

    Article  CAS  PubMed  Google Scholar 

  107. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2-15. https://doi.org/10.1016/j.pain.2010.09.030.

    Article  PubMed  Google Scholar 

  108. Bouhassira D, Attal N, Fermanian J, Alchaar H, Gautron M, Masquelier E, et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain. 2004;108:248–57. https://doi.org/10.1016/j.pain.2003.12.024.

    Article  PubMed  Google Scholar 

  109. Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, et al. NeuPSIG guidelines on neuropathic pain assessment. PAIN®. 2011;152:14–27. https://doi.org/10.1016/j.pain.2010.07.031.

  110. Freeman R, Baron R, Bouhassira D, Cabrera J, Emir B. Sensory profiles of patients with neuropathic pain based on the neuropathic pain symptoms and signs. PAIN®. 2014;155:367–76. https://doi.org/10.1016/j.pain.2013.10.023.

  111. Bouhassira D, Wilhelm S, Schacht A, Perrot S, Kosek E, Cruccu G, et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. PAIN®. 2014;155:2171–9. https://doi.org/10.1016/j.pain.2014.08.020.

  112. Steigerwald I, Müller M, Davies A, Samper D, Sabatowski R, Baron R, et al. Effectiveness and safety of tapentadol prolonged release for severe, chronic low back pain with or without a neuropathic pain component: results of an open-label, phase 3b study. Curr Med Res Opin. 2012;28:911–36. https://doi.org/10.1185/03007995.2012.679254.

    Article  CAS  PubMed  Google Scholar 

  113. Soler MD, Moriña D, Rodríguez N, Saurí J, Vidal J, Navarro A, et al. Sensory symptom profiles of patients with neuropathic pain after spinal cord injury. Clin J Pain. 2017;33:827. https://doi.org/10.1097/AJP.0000000000000467.

    Article  PubMed  Google Scholar 

  114. Widerström-Noga E, Loeser JD, Jensen TS, Finnerup NB. AAPT diagnostic criteria for central neuropathic pain. J Pain. 2017;18:1417–26. https://doi.org/10.1016/j.jpain.2017.06.003.

    Article  PubMed  Google Scholar 

  115. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73:638–52. https://doi.org/10.1016/j.neuron.2012.02.008.

    Article  CAS  Google Scholar 

  116. Baron R, Förster M, Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 2012;11:999–1005. https://doi.org/10.1016/S1474-4422(12)70189-8.

    Article  PubMed  Google Scholar 

  117. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158:261. https://doi.org/10.1097/j.pain.0000000000000753.

    Article  PubMed  Google Scholar 

  118. Attal N, Fermanian C, Fermanian J, Lanteri-Minet M, Alchaar H, Bouhassira D. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion? Pain. 2008;138:343–53. https://doi.org/10.1016/j.pain.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  119. Jensen TS, Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain. 2003;102:1–8. https://doi.org/10.1016/s0304-3959(03)00006-x.

    Article  PubMed  Google Scholar 

  120. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88. https://doi.org/10.1016/j.ejpain.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  121. Backonja M, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. PAIN®. 2013;154:1807–19. https://doi.org/10.1016/j.pain.2013.05.047.

  122. Eide PK, Jørum E, Stenehjem AE. Somatosensory findings in patients with spinal cord injury and central dysaesthesia pain. J Neurol Neurosurg Psychiatry. 1996;60:411–5. https://doi.org/10.1136/jnnp.60.4.411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003;126:57–70. https://doi.org/10.1093/brain/awg007.

    Article  CAS  PubMed  Google Scholar 

  124. Milhorat TH, Kotzen RM, Mu HT, Capocelli AL, Milhorat RH. Dysesthetic pain in patients with syringomyelia. Neurosurgery 1996;38:940–6. https://doi.org/10.1097/00006123-199605000-00017(discussion 946–947).

  125. Finnerup NB, Sørensen L, Biering-Sørensen F, Johannesen IL, Jensen TS. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain. Exp Neurol. 2007;207:139–49. https://doi.org/10.1016/j.expneurol.2007.06.001.

    Article  PubMed  Google Scholar 

  126. Berić A, Dimitrijević MR, Lindblom U. Central dysesthesia syndrome in spinal cord injury patients. Pain. 1988;34:109–16. https://doi.org/10.1016/0304-3959(88)90155-8.

    Article  PubMed  Google Scholar 

  127. Wasner G, Lee BB, Engel S, McLachlan E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain. 2008;131:2387–400. https://doi.org/10.1093/brain/awn169.

    Article  PubMed  Google Scholar 

  128. Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J Neurotrauma. 2012;29:2706–15. https://doi.org/10.1089/neu.2012.2343.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Defrin R, Ohry A, Blumen N, Urca G. Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain. 2001;89:253–63. https://doi.org/10.1016/S0304-3959(00)00369-9.

    Article  CAS  PubMed  Google Scholar 

  130. Zeilig G, Enosh S, Rubin-Asher D, Lehr B, Defrin R. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain. Brain. 2012;135:418–30. https://doi.org/10.1093/brain/awr270.

    Article  PubMed  Google Scholar 

  131. Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50. https://doi.org/10.1016/j.pain.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  132. Widerström-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma. 2016;33:482–92. https://doi.org/10.1089/neu.2015.4040.

    Article  PubMed  Google Scholar 

  133. Felix ER, Widerström-Noga EG. Reliability and validity of quantitative sensory testing in persons with spinal cord injury and neuropathic pain. J Rehabil Res Dev. 2009;46:69–83.

    Article  PubMed  Google Scholar 

  134. Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain. 2015;156:166–74. https://doi.org/10.1016/j.pain.0000000000000019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kumru H, Soler D, Vidal J, Tormos JM, Pascual-Leone A, Valls-Sole J. Evoked potentials and quantitative thermal testing in spinal cord injury patients with chronic neuropathic pain. Clin Neurophysiol. 2012;123:598–604. https://doi.org/10.1016/j.clinph.2011.07.038.

    Article  PubMed  Google Scholar 

  136. Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol. 2012;234:362–72. https://doi.org/10.1016/j.expneurol.2011.10.010.

    Article  CAS  PubMed  Google Scholar 

  137. Gwak YS, Crown ED, Unabia GC, Hulsebosch CE. Propentofylline attenuates allodynia, glial activation and modulates GABAergic tone after spinal cord injury in the rat. Pain. 2008;138:410–22. https://doi.org/10.1016/j.pain.2008.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhuang Z-Y, Gerner P, Woolf CJ, Ji R-R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–59. https://doi.org/10.1016/j.pain.2004.12.022.

    Article  PubMed  Google Scholar 

  139. Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr Opin Anesthesiol. 2010;23:611. https://doi.org/10.1097/ACO.0b013e32833c348b.

    Article  Google Scholar 

  140. Albu S, Gómez-Soriano J, Avila-Martin G, Taylor J. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures. Pain. 2015;156:260. https://doi.org/10.1097/01.j.pain.0000460306.48701.f9.

    Article  PubMed  Google Scholar 

  141. Gruener H, Zeilig G, Laufer Y, Blumen N, Defrin R. Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain. 2016;157:1415. https://doi.org/10.1097/j.pain.0000000000000532.

    Article  PubMed  Google Scholar 

  142. Gagné M, Côté I, Boulet M, Jutzeler CR, Kramer JLK, Mercier C. Conditioned pain modulation decreases over time in patients with neuropathic pain following a spinal cord injury. Neurorehabil Neural Repair. 2020;34(11):997–1008. https://doi.org/10.1177/1545968320962497.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lütolf R, Rosner J, Curt A, Hubli M. Indicators of central sensitization in chronic neuropathic pain after spinal cord injury. Eur J Pain. 2022;26:2162–75. https://doi.org/10.1002/ejp.2028.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lütolf R, De Schoenmacker I, Rosner J, Sirucek L, Schweinhardt P, Curt A, et al. Anti- and pro-nociceptive mechanisms in neuropathic pain after human spinal cord injury. Eur J Pain. 2022;26:2176–87. https://doi.org/10.1002/ejp.2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Geber C, Klein T, Azad S, Birklein F, Gierthmühlen J, Huge V, et al. Test–retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. PAIN®. 2011;152:548–56. https://doi.org/10.1016/j.pain.2010.11.013.

  146. Rabey M, Slater H, O’Sullivan P, Beales D, Smith A. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis. Pain. 2015;156:1874. https://doi.org/10.1097/j.pain.0000000000000244.

    Article  PubMed  Google Scholar 

  147. Koroschetz J, Rehm SE, Gockel U, Brosz M, Freynhagen R, Tölle TR, et al. Fibromyalgia and neuropathic pain—differences and similarities. A comparison of 3057 patients with diabetic painful neuropathy and fibromyalgia. BMC Neurol. 2011;11:55. https://doi.org/10.1186/1471-2377-11-55.

  148. Bannister K, Sachau J, Baron R, Dickenson AH. Neuropathic pain: mechanism-based therapeutics. Annu Rev Pharmacol Toxicol. 2020;60:257–74. https://doi.org/10.1146/annurev-pharmtox-010818-021524.

    Article  CAS  PubMed  Google Scholar 

  149. Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84. https://doi.org/10.1016/j.ejpain.2004.11.001.

    Article  PubMed  Google Scholar 

  150. Salt TE. Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus. Neuroscience. 1989;28:17–26. https://doi.org/10.1016/0306-4522(89)90228-5.

    Article  CAS  PubMed  Google Scholar 

  151. Roberts WA, Eaton SA, Salt TE. Widely distributed GABA-mediated afferent inhibition processes within the ventrobasal thalamus of rat and their possible relevance to pathological pain states and somatotopic plasticity. Exp Brain Res. 1992;89:363–72. https://doi.org/10.1007/BF00228252.

    Article  CAS  PubMed  Google Scholar 

  152. Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ. Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol. 1997;77:3370–80. https://doi.org/10.1152/jn.1997.77.6.3370.

    Article  CAS  PubMed  Google Scholar 

  153. Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage. 2011;58:1070–80. https://doi.org/10.1016/j.neuroimage.2011.07.022.

    Article  PubMed  Google Scholar 

  154. Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci. 2000;20:7438–45. https://doi.org/10.1523/JNEUROSCI.20-19-07438.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–5. https://doi.org/10.1126/science.1060952.

    Article  CAS  PubMed  Google Scholar 

  156. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol. 2007;204:182–94. https://doi.org/10.1016/j.expneurol.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  157. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73. https://doi.org/10.1523/JNEUROSCI.3576-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Metz AE, Yau H-J, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci. 2009;106:2423–8. https://doi.org/10.1073/pnas.0809897106.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–403. https://doi.org/10.1523/JNEUROSCI.4123-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–5. https://doi.org/10.1523/JNEUROSCI.2541-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li X-Y, Ko H-G, Chen T, Descalzi G, Koga K, Wang H, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMζ in the anterior cingulate cortex. Science. 2010;330:1400–4. https://doi.org/10.1126/science.1191792.

    Article  CAS  PubMed  Google Scholar 

  162. Tsay A, Allen TJ, Proske U, Giummarra MJ. Sensing the body in chronic pain: a review of psychophysical studies implicating altered body representation. Neurosci Biobehav Rev. 2015;52:221–32. https://doi.org/10.1016/j.neubiorev.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  163. Moseley GL, Gallace A, Spence C. Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix.’ Neurosci Biobehav Rev. 2012;36:34–46. https://doi.org/10.1016/j.neubiorev.2011.03.013.

    Article  PubMed  Google Scholar 

  164. Vastano R, Costantini M, Alexander WH, Widerstrom-Noga E. Multisensory integration in humans with spinal cord injury. Sci Rep. 2022;12:22156. https://doi.org/10.1038/s41598-022-26678-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Osinski T, Martinez V, Bensmail D, Hatem S, Bouhassira D. Interplay between body schema, visuospatial perception and pain in patients with spinal cord injury. Eur J Pain. 2020:ejp.1600. https://doi.org/10.1002/ejp.1600.

  166. Ionta S, Villiger M, Jutzeler CR, Freund P, Curt A, Gassert R. Spinal cord injury affects the interplay between visual and sensorimotor representations of the body. Sci Rep. 2016;6:20144. https://doi.org/10.1038/srep20144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: the role of body representation and multisensory integration. Prog Neurobiol. 2022;208:102179. https://doi.org/10.1016/j.pneurobio.2021.102179.

  168. Vastano R, Widerstrom-Noga E. Event-related potentials during mental rotation of body-related stimuli in spinal cord injury population. Neuropsychologia. 2022:108447. https://doi.org/10.1016/j.neuropsychologia.2022.108447.

  169. Gallagher S. How the body shapes the mind. New York: Oxford University Press; 2006.

    Google Scholar 

  170. Pitron V, de Vignemont F. Beyond differences between the body schema and the body image: Insights from body hallucinations. Conscious Cogn. 2017;53:115–21. https://doi.org/10.1016/j.concog.2017.06.006.

    Article  PubMed  Google Scholar 

  171. Pazzaglia M, Haggard P, Scivoletto G, Molinari M, Lenggenhager B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor Neurol Neurosci. 2016;34:603–13. https://doi.org/10.3233/RNN-150611.

    Article  PubMed  Google Scholar 

  172. Ramachandran VS, Altschuler EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain J Neurol. 2009;132:1693–710. https://doi.org/10.1093/brain/awp135.

    Article  CAS  Google Scholar 

  173. Ramachandran VS, Brang D, McGeoch PD. Size reduction using Mirror Visual Feedback (MVF) reduces phantom pain. Neurocase. 2009;15:357–60. https://doi.org/10.1080/13554790903081767.

    Article  CAS  PubMed  Google Scholar 

  174. Pozeg P, Palluel E, Ronchi R, Solcà M, Al-Khodairy A-W, Jordan X, et al. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017;89:1894–903. https://doi.org/10.1212/WNL.0000000000004585.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Pamment J, Aspell JE. Putting pain out of mind with an ‘out of body’ illusion. Eur J Pain. 2017;21:334–42. https://doi.org/10.1002/ejp.927.

  176. Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122:197–209. https://doi.org/10.1016/j.pain.2006.02.023.

    Article  PubMed  Google Scholar 

  177. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155:1027–36. https://doi.org/10.1016/j.pain.2014.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, et al. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154:204–12. https://doi.org/10.1016/j.pain.2012.07.022.

    Article  CAS  PubMed  Google Scholar 

  179. Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. PAIN®. 2009;141:52–9. https://doi.org/10.1016/j.pain.2008.10.007.

  180. Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64–73. https://doi.org/10.1016/j.brainres.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  181. Tran Y, Austin P, Lo C, Craig A, Middleton JW, Wrigley PJ, et al. An exploratory EEG analysis on the effects of virtual reality in people with neuropathic pain following spinal cord injury. Sensors. 2022;22:2629. https://doi.org/10.3390/s22072629.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Anderson K, Chrioin C, Fraser M, Purcell M, Stein S, Vuckovic A. Markers of central neuropathic pain in Higuchi fractal analysis of EEG signals from people with spinal cord injury. Front Neurosci. 2021;15:705652. https://doi.org/10.3389/fnins.2021.705652(eCollection 2021).

  183. Wydenkeller S, Maurizio S, Dietz V, Halder P. Neuropathic pain in spinal cord injury: Significance of clinical and electrophysiological measures. Eur J Neurosci. 2009;30(1):91–9. https://doi.org/10.1111/j.1460-9568.2009.0680.

    Article  PubMed  Google Scholar 

  184. Kumru H, Soler D, Vidal J, Navarro X, Tormos JM, Pascual-Leone A, et al. The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: An evoked potentials and quantitative thermal testing study. Eur J Pain. 2013;17:55–66. https://doi.org/10.1002/j.1532-2149.2012.00167.x.

    Article  CAS  PubMed  Google Scholar 

  185. Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, et al. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Hum Brain Mapp. 2021;42:3733–49. https://doi.org/10.1002/hbm.25401.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol. 2013;8:576–93. https://doi.org/10.1007/s11481-013-9460-x.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pattany PM, Yezierski RP, Widerström-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. Am J Neuroradiol. 2002;23:901–5.

    PubMed  PubMed Central  Google Scholar 

  188. Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex N Y N. 1991;2010(20):1409–19. https://doi.org/10.1093/cercor/bhp205.

    Article  Google Scholar 

  189. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129–53. https://doi.org/10.1002/1099-1492(200005)13:3%3c129::AID-NBM619%3e3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  190. Sorensen L, Siddall PJ, Trenell MI, Yue DK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care. 2008;31:980–1. https://doi.org/10.2337/dc07-2088.

    Article  PubMed  Google Scholar 

  191. Lee J, Andronesi OC, Torrado-Carvajal A, Ratai E-M, Loggia ML, Weerasekera A, et al. 3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia. Eur J Pain. 2021;25:2050–64. https://doi.org/10.1002/ejp.1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fukui S, Matsuno M, Inubushi T, Nosaka S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with 1H-MRS. Magn Reson Imaging. 2006;24:75–9. https://doi.org/10.1016/j.mri.2005.10.021.

    Article  CAS  PubMed  Google Scholar 

  193. Widerström-Noga E, Govind V, Adcock JP, Levin BE, Maudsley AA. Subacute pain after traumatic brain injury is associated with lower insular N-acetylaspartate concentrations. J Neurotrauma. 2016;33:1380–9. https://doi.org/10.1089/neu.2015.4098.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Robayo LE, Govind V, Salan T, Cherup NP, Sheriff S, Maudsley AA, Widerström-Noga E. Neurometabolite alterations in traumatic brain injury and associations with chronic pain‬ in press. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9VMW4eAAAAAJ&sortby=pubdate&citation_for_view=9VMW4eAAAAAJ:2osOgNQ5qMEC. Accessed 21 Feb 2023.

  195. Isaacks RE, Bender AS, Kim CY, Norenberg MD. Effect of osmolality and myo-inositol deprivation on the transport properties of myo-inositol in primary astrocyte cultures. Neurochem Res. 1997;22:1461–9. https://doi.org/10.1023/A:1021950311308.

    Article  CAS  PubMed  Google Scholar 

  196. Stanwell P, Siddall P, Keshava N, Cocuzzo D, Ramadan S, Lin A, et al. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain. Neuroimage. 2010;53:544–52. https://doi.org/10.1016/j.neuroimage.2010.06.051.

    Article  PubMed  Google Scholar 

  197. Kameda T, Fukui S, Tominaga R, Sekiguchi M, Iwashita N, Ito K, et al. Brain metabolite changes in the anterior cingulate cortex of chronic low back pain patients and correlations between metabolites and psychological state. Clin J Pain. 2018;34:657–63. https://doi.org/10.1097/AJP.0000000000000583.

    Article  PubMed  Google Scholar 

  198. Chiappelli J, Rowland LM, Wijtenburg SA, Muellerklein F, Tagamets M, McMahon RP, et al. Evaluation of myo-inositol as a potential biomarker for depression in schizophrenia. Neuropsychopharmacology. 2015;40:2157–64. https://doi.org/10.1038/npp.2015.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Pedrabissi F, et al. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR spectroscopy study. Am J Neuroradiol. 2011;32:1585–90. https://doi.org/10.3174/ajnr.A2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Valdés M, Collado A, Bargalló N, Vázquez M, Rami L, Gómez E, et al. Increased glutamate/glutamine compounds in the brains of patients with fibromyalgia: a magnetic resonance spectroscopy study. Arthritis Rheum. 2010;62:1829–36. https://doi.org/10.1002/art.27430.

    Article  PubMed  Google Scholar 

  201. Simis M, Reidler JS, Duarte Macea D, Moreno Duarte I, Wang X, Lenkinski R, et al. Investigation of central nervous system dysfunction in chronic pelvic pain using magnetic resonance spectroscopy and noninvasive brain stimulation. Pain Pract. 2015;15:423–32. https://doi.org/10.1111/papr.12202.

    Article  PubMed  Google Scholar 

  202. Davie CA, Barker GJ, Tofts PS, Hawkins CP, Brennan A, Miller DH, et al. Detection of myelin breakdown products by proton magnetic resonance spectroscopy. Lancet. 1993;341:630–1. https://doi.org/10.1016/0140-6736(93)90390-3.

    Article  CAS  PubMed  Google Scholar 

  203. Gill SS, Small RK, Thomas DGT, Patel P, Porteous R, Van Bruggen N, et al. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 1989;2:196–200. https://doi.org/10.1002/nbm.1940020505.

    Article  CAS  PubMed  Google Scholar 

  204. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993;13:981–9. https://doi.org/10.1523/JNEUROSCI.13-03-00981.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Govind V, Gold S, Kaliannan K, Saigal G, Falcone S, Arheart KL, et al. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27:483–96. https://doi.org/10.1089/neu.2009.1159.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H–magnetic resonance spectroscopy study. J Neurotrauma. 2009;26:1635–43. https://doi.org/10.1089/neu.2009.0896.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Strużyńska L, Sulkowski G. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. J Inorg Biochem. 2004;98:951–8. https://doi.org/10.1016/j.jinorgbio.2004.02.010.

    Article  CAS  PubMed  Google Scholar 

  208. Hertz L, Rothman DL. Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology. 2017;6:17. https://doi.org/10.3390/biology6010017.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Legarreta MD, Sheth C, Prescot AP, Renshaw PF, McGlade EC, Yurgelun-Todd DA. An exploratory proton MRS examination of gamma-aminobutyric acid, glutamate, and glutamine and their relationship to affective aspects of chronic pain. Neurosci Res. 2021;163:10–7. https://doi.org/10.1016/j.neures.2020.03.002.

    Article  CAS  PubMed  Google Scholar 

  210. Serrano-Muñoz D, Galán-Arriero I, Ávila-Martín G, Gómez-Soriano J, Florensa J, García-Peris A, et al. Deficient inhibitory endogenous pain modulation correlates with periaqueductal gray matter metabolites during chronic whiplash injury. Clin J Pain. 2019;35:668–77. https://doi.org/10.1097/AJP.0000000000000722.

    Article  PubMed  Google Scholar 

  211. Auvichayapat P, Keeratitanont K, Janyachareon T, Auvichayapat N. The effects of transcranial direct current stimulation on metabolite changes at the anterior cingulate cortex in neuropathic pain: a pilot study. J Pain Res. 2018;11:2301–9. https://doi.org/10.2147/JPR.S172920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pfyffer D, Wyss PO, Huber E, Curt A, Henning A, Freund P. Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology. 2020;95:e805–14. https://doi.org/10.1212/WNL.0000000000010003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55. https://doi.org/10.1002/nbm.782.

    Article  PubMed  Google Scholar 

  214. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401–5. https://doi.org/10.1148/radiology.177.2.2217776.

    Article  CAS  PubMed  Google Scholar 

  215. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46. https://doi.org/10.1002/mrm.1910140218.

    Article  CAS  PubMed  Google Scholar 

  216. Douek P, Turner R, Pekar J, Patronas N, Le Bihan D. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr. 1991;15:923–9. https://doi.org/10.1097/00004728-199111000-00003.

    Article  CAS  PubMed  Google Scholar 

  217. Basser PJ, Mattiello J, Lebihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247–54. https://doi.org/10.1006/jmrb.1994.1037.

    Article  CAS  PubMed  Google Scholar 

  218. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48. https://doi.org/10.1148/radiology.201.3.8939209.

    Article  CAS  PubMed  Google Scholar 

  219. Stevenson VL, Parker GJM, Barker GJ, Birnie K, Tofts PS, Miller DH, et al. Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci. 2000;178:81–7. https://doi.org/10.1016/S0022-510X(00)00339-7.

    Article  CAS  PubMed  Google Scholar 

  220. Iannucci G, Rovaris M, Giacomotti L, Comi G, Filippi M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. Am J Neuroradiol. 2001;22:1462–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Hagmann P, Jonasson L, Maeder P, Thiran J-P, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26:S205–23. https://doi.org/10.1148/rg.26si065510.

    Article  PubMed  Google Scholar 

  222. Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, et al. Clinical, functional and structural determinants of central pain in syringomyelia. Brain. 2010;133:3409–22. https://doi.org/10.1093/brain/awq244.

    Article  PubMed  Google Scholar 

  223. Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA. 1998;95(3):765–72. https://doi.org/10.1073/pnas.95.3.765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Park E, Cha H, Kim E, Min YS, Kim AR, Lee HJ, Jung TD, Chang Y. Alterations in power spectral density in motor- and pain-related networks on neuropathic pain after spinal cord injury. Neuroimage Clin. 2020;28:102342. https://doi.org/10.1016/j.nicl.2020.102342.

  225. Mandloi S, Syed M, Shoraka O, Ailes I, Kang KC, Sathe A, Heller J, Thalheimer S, Mohamed FB, Sharan A, Harrop J, Krisa L, Matias C, Alizadeh M. The role of the insula in chronic pain following spinal cord injury: a resting-state fMRI study. J Neuroimaging. 2023. https://doi.org/10.1111/jon.13117(Online ahead of print).

  226. Jutzeler CR, Curt A, Kramer JL. Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin. 2015;2015(9):599–606. https://doi.org/10.1016/j.nicl.2015.09.018.eCollection.

    Article  Google Scholar 

  227. Kyathanahally SP, Azzarito M, Rosner J, Calhoun VD, Blaiotta C, Ashburner J, Weiskopf N, Wiech K, Friston K, Ziegler G, Freund P. Microstructural plasticity in nociceptive pathways after spinal cord injury. J Neurol Neurosurg Psychiatry. 2021;92(8):863–71. https://doi.org/10.1136/jnnp-2020-325580.

    Article  PubMed  Google Scholar 

  228. Campbell CM, Jamison RN, Edwards RR. Psychological screening/phenotyping as predictors for spinal cord stimulation. Curr Pain Headache Rep. 2012;17:307. https://doi.org/10.1007/s11916-012-0307-6.

    Article  Google Scholar 

  229. Edwards RR, Fillingim RB, Maixner W, Sigurdsson A, Haythornthwaite J. Catastrophizing predicts changes in thermal pain responses after resolution of acute dental pain. J Pain. 2004;5:164–70. https://doi.org/10.1016/j.jpain.2004.02.226.

    Article  PubMed  Google Scholar 

  230. Keogh E, Mansoor L. Investigating the effects of anxiety sensitivity and coping on the perception of cold pressor pain in healthy women. Eur J Pain. 2001;5:11–22. https://doi.org/10.1053/eujp.2000.0210.

    Article  CAS  PubMed  Google Scholar 

  231. Ramírez-Maestre C, Esteve R. Disposition and adjustment to chronic pain. Curr Pain Headache Rep. 2013;17:312. https://doi.org/10.1007/s11916-012-0312-9.

    Article  PubMed  Google Scholar 

  232. Peterson MD, Meade MA, Lin P, Kamdar N, Rodriguez G, Krause JS, et al. Psychological morbidity following spinal cord injury and among those without spinal cord injury: the impact of chronic centralized and neuropathic pain. Spinal Cord. 2022;60:163–9. https://doi.org/10.1038/s41393-021-00731-4.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Turk DC, Rudy TE. Toward an empirically derived taxonomy of chronic pain patients: integration of psychological assessment data. J Consult Clin Psychol. 1988;56:233–8. https://doi.org/10.1037/0022-006X.56.2.233.

    Article  CAS  PubMed  Google Scholar 

  234. Summers JD, Rapoff MA, Varghese G, Porter K, Palmer RE. Psychosocial factors in chronic spinal cord injury pain. Pain. 1991;47:183–9. https://doi.org/10.1016/0304-3959(91)90203-A.

    Article  PubMed  Google Scholar 

  235. Richards JS. Chronic pain and spinal cord injury: review and comment. Clin J Pain. 1992;8:119–22. https://doi.org/10.1097/00002508-199206000-00009.

    Article  CAS  PubMed  Google Scholar 

  236. Jacob KS, Zachariah K, Bhattacharji S. Depression in individuals with spinal cord injury: methodological issues. Spinal Cord. 1995;33:377–80. https://doi.org/10.1038/sc.1995.86.

    Article  CAS  Google Scholar 

  237. Kennedy P, Frankel H, Gardner B, Nuseibeh I. Factors associated with acute and chronic pain following traumatic spinal cord injuries. Spinal Cord. 1997;35:814–7. https://doi.org/10.1038/sj.sc.3100569.

    Article  CAS  PubMed  Google Scholar 

  238. Ullrich PM, Lincoln RK, Tackett MJ, Miskevics S, Smith BM, Weaver FM. Pain, depression, and health care utilization over time after spinal cord injury. Rehabil Psychol. 2013;58:158–65. https://doi.org/10.1037/a0032047.

    Article  PubMed  Google Scholar 

  239. Williams R, Murray A. Prevalence of depression after spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2015;96:133–40. https://doi.org/10.1016/j.apmr.2014.08.016.

    Article  PubMed  Google Scholar 

  240. Scivoletto G, Petrelli A, Lucente LD, Castellano V. Psychological investigation of spinal cord injury patients. Spinal Cord. 1997;35:516–20. https://doi.org/10.1038/sj.sc.3100437.

    Article  CAS  PubMed  Google Scholar 

  241. King C, Kennedy P. Coping effectiveness training for people with spinal cord injury: preliminary results of a controlled trial. Br J Clin Psychol. 1999;38:5–14. https://doi.org/10.1348/014466599162629.

    Article  CAS  PubMed  Google Scholar 

  242. Kemp Bryan J, Stuart Krause J. Depression and life satisfaction among people ageing with post-polio and spinal cord injury. DisabilRehabil 1999;21:241–9. https://doi.org/10.1080/096382899297666.

  243. Haythornthwaite JA, Benrud-Larson LM. Psychological aspects of neuropathic pain. Clin J Pain. 2000;16:S101.

    Article  CAS  PubMed  Google Scholar 

  244. Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord. 2000;38:611–4. https://doi.org/10.1038/sj.sc.3101073.

    Article  CAS  PubMed  Google Scholar 

  245. NorrbrinkBudh C, Hultling C, Lundeberg T. Quality of sleep in individuals with spinal cord injury: a comparison between patients with and without pain. Spinal Cord. 2005;43:85–95. https://doi.org/10.1038/sj.sc.3101680.

    Article  CAS  Google Scholar 

  246. Widerström-Noga E, Anderson KD, Perez S, Martinez-Arizala A, Cambridge JM. Subgroup perspectives on chronic pain and its management after spinal cord injury. J Pain. 2018;19:1480–90. https://doi.org/10.1016/j.jpain.2018.07.003.

    Article  PubMed  Google Scholar 

  247. Markman J, Resnick M, Greenberg S, Katz N, Yang R, Scavone J, et al. Efficacy of pregabalin in post-traumatic peripheral neuropathic pain: A randomized, double-blind, placebo-controlled phase 3 trial. J Neurol. 2018;265:2815–24. https://doi.org/10.1007/s00415-018-9063-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Gewandter JS, Sohn MB, De Guzman R, Frazer ME, Chiodo V, Sharma S, Geha P, Markman JD. Predicting treatment response with sensory phenotyping in post-traumatic neuropathic pain. Pain Med. 2022;23(10):1726–32. https://doi.org/10.1093/pm/pnac045.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Todorovic MS, Frey K, Swarm RA, Bottros M, Rao L, Tallchief D, et al. Prediction of individual analgesic response to intravenous lidocaine in painful diabetic peripheral neuropathy: a randomized, placebo-controlled, crossover trial. Clin J Pain. 2022;38:65. https://doi.org/10.1097/AJP.0000000000001001.

    Article  Google Scholar 

  250. Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, et al. The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain. 2006;7:S1-29. https://doi.org/10.1016/j.jpain.2006.01.444.

    Article  CAS  PubMed  Google Scholar 

  251. Jain SM, Balamurugan R, Tandon M, Mozaffarian N, Gudi G, Salhi Y, et al. Randomized, double-blind, placebo-controlled trial of ISC 17536, an oral inhibitor of transient receptor potential ankyrin 1, in patients with painful diabetic peripheral neuropathy: impact of preserved small nerve fiber function. Pain. 2022;163:e738–47. https://doi.org/10.1097/j.pain.0000000000002470.

    Article  CAS  PubMed  Google Scholar 

  252. Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem. 2010;53:5085–107. https://doi.org/10.1021/jm100062h.

    Article  CAS  PubMed  Google Scholar 

  253. Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82. https://doi.org/10.1016/j.cell.2006.02.023.

    Article  CAS  PubMed  Google Scholar 

  254. Rech JC, Eckert WA, Maher MP, Banke T, Bhattacharya A, Wickenden AD. Recent advances in the biology and medicinal chemistry of TRPA1. Future Med Chem. 2010;2:843–58. https://doi.org/10.4155/fmc.10.29.

    Article  CAS  PubMed  Google Scholar 

  255. de David Antoniazzi CT, De Prá SD-T, Ferro PR, Silva MA, Adamante G, de Almeida AS, et al. Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 2018;125:28–38. https://doi.org/10.1016/j.ejps.2018.09.012.

  256. Demant DT, Lund K, Finnerup NB, Vollert J, Maier C, Segerdahl MS, et al. Pain relief with lidocaine 5% patch in localized peripheral neuropathic pain in relation to pain phenotype: a randomised, double-blind, and placebo-controlled, phenotype panel study. Pain. 2015;156:2234. https://doi.org/10.1097/j.pain.0000000000000266.

    Article  CAS  PubMed  Google Scholar 

  257. Demant DT, Lund K, Vollert J, Maier C, Segerdahl M, Finnerup NB, et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. PAIN® 2014;155:2263–73. https://doi.org/10.1016/j.pain.2014.08.014.

  258. Soler D, Moriña D, Kumru H, Vidal J, Navarro X. Transcranial direct current stimulation and visual illusion effect according to sensory phenotypes in patients with spinal cord injury and neuropathic pain. J Pain. 2020. https://doi.org/10.1016/j.jpain.2020.06.004.

    Article  PubMed  Google Scholar 

  259. Dworkin RH, Edwards RR. Phenotypes and treatment response: it’s difficult to make predictions, especially about the future. Pain. 2017;158:187. https://doi.org/10.1097/j.pain.0000000000000771.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Widerström-Noga.

Ethics declarations

Funding

No specific funding to declare.

Conflict of interest

Eva Widerström-Noga declares no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent (participation and publication)

Not applicable.

Data availability statement

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widerström-Noga, E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 83, 1001–1025 (2023). https://doi.org/10.1007/s40265-023-01903-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01903-7

Navigation