Skip to main content

Advertisement

Log in

Abstract

The development in electronic sector has brought a remarkable change in the lifestyle of mankind. At the same time, this technological advancement results in adverse effect on environment due to the use of toxic and non-degradable materials in various electronic devices. With the emergence of environmental problems, the green, reprogrammable, biodegradable, sustainable and environmental-friendly electronic devices have become one of the best solutions for protecting our environment from hazardous materials without compromising the growth of the electronic industry. Natural material has emerged as the promising candidate for the next generation of electronic devices due to its easy processing, transparency, flexibility, abundant resources, sustainability, recyclability, and simple extraction. This review targets the characteristics, advancements, role, limitations, and prospects of using natural materials as the functional layer of a resistive switching memory device with a primary focus on the switching/memory properties. Among the available memory devices, resistive random access memory, write once read many unipolar memory, etc., devices have a huge potential to become the nonvolatile memory of the next generation owing to their simple structure, high scalability, and low power consumption. The motivation behind this work is to promote the use of natural materials in electronic devices and attract researchers toward a green solution of hazardous problems associated with the electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polák M, Drápalová L (2012) Estimation of end of life mobile phones generation: the case study of the Czech Republic. Waste Manag 32:1583–1591. https://doi.org/10.1016/j.wasman.2012.03.028

    Article  Google Scholar 

  2. UN report: Time to seize opportunity, tackle challenge of e-waste. In: UN Environment (2019). http://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste. Accessed 5 May 2023

  3. Chatterjee DS, Electronic Waste and India

  4. Giving Intelligence Teams an AI-powered advantage. https://www.reportlinker.com/. Accessed 5 May 2023

  5. Lee C, Kim S, Cho Y-H (2022) Silk and paper: progress and prospects in green photonics and electronics. Adv Sustain Syst 6:2000216. https://doi.org/10.1002/adsu.202000216

    Article  Google Scholar 

  6. Rehman MM, ur Rehman HMM, Kim WY et al (2021) Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility. ACS Appl Electron Mater 3:2832–2861. https://doi.org/10.1021/acsaelm.1c00078

    Article  Google Scholar 

  7. Cheong KY, Tayeb IA, Zhao F, Abdullah JM (2021) Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application. Nanotechnol Rev 10:680–709. https://doi.org/10.1515/ntrev-2021-0047

    Article  Google Scholar 

  8. Kook G, Jeong S, Kim MK et al (2020) Fabrication of highly dense silk fibroin biomemristor array and its resistive switching characteristics. Adv Mater Technol 5:1900991. https://doi.org/10.1002/admt.201900991

    Article  Google Scholar 

  9. Wang H, Zhu B, Ma X et al (2016) Physically transient resistive switching memory based on silk protein. Small 12:2715–2719. https://doi.org/10.1002/smll.201502906

    Article  Google Scholar 

  10. Yang C-S, Shang D-S, Chai Y-S et al (2016) Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys Chem Chem Phys 18:12466–12475. https://doi.org/10.1039/C6CP00823B

    Article  Google Scholar 

  11. Padma N, Betty CA, Samanta S, Nigam A (2017) Tunable switching characteristics of low operating voltage organic bistable memory devices based on gold nanoparticles and copper phthalocyanine thin films. J Phys Chem C 121:5768–5778. https://doi.org/10.1021/acs.jpcc.6b09404

    Article  Google Scholar 

  12. Hsu C-C, Tsai J-E, Lin Y-S (2019) A write-once-read-many-times memory based on a sol-gel derived copper oxide semiconductor. Phys B 562:20–25. https://doi.org/10.1016/j.physb.2019.03.007

    Article  ADS  Google Scholar 

  13. Moller S, Perlov C, Jackson W et al (2003) A polymer/semiconductor write-once read-many-times memory. Nature 426:166

    Article  ADS  Google Scholar 

  14. Chen Y-C, Lin C-C, Hu S-T et al (2019) A novel resistive switching identification method through relaxation characteristics for sneak-path-constrained selectorless RRAM application. Sci Rep. https://doi.org/10.1038/s41598-019-48932-5

    Article  Google Scholar 

  15. Ielmini D, Wong H-SP (2018) In-memory computing with resistive switching devices. Nat Electron 1:333–343. https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  16. Kumar D, Aluguri R, Chand U, Tseng TY (2017) Metal oxide resistive switching memory: materials, properties and switching mechanisms. Ceram Int 43:S547–S556. https://doi.org/10.1016/j.ceramint.2017.05.289

    Article  Google Scholar 

  17. Yu L-E, Kim S, Ryu M-K et al (2008) Structure effects on resistive switching of Al/TiO/Al devices for RRAM applications. IEEE Electron Device Lett 29:331–333. https://doi.org/10.1109/LED.2008.918253

    Article  ADS  Google Scholar 

  18. Niu G, Calka P, Auf der Maur M et al (2016) Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. Sci Rep 6:25757. https://doi.org/10.1038/srep25757

    Article  ADS  Google Scholar 

  19. Wang Y, Lv H, Wang W et al (2010) Highly stable radiation-hardened resistive-switching memory. IEEE Electron Device Lett 31:1470–1472. https://doi.org/10.1109/LED.2010.2081340

    Article  ADS  Google Scholar 

  20. Praveen P, Rose TP, Saji KJ (2022) Top electrode dependent resistive switching in M/ZnO/ITO memristors, M = Al, ITO, Cu, and Au. Microelectron J 121:105388. https://doi.org/10.1016/j.mejo.2022.105388

    Article  Google Scholar 

  21. Li Y, Pan X, Zhang Y, Chen X (2015) Write-once-read-many-times and bipolar resistive switching characteristics of TiN/HfO2/Pt devices dependent on the electroforming polarity. IEEE Electron Device Lett 36:1149–1152. https://doi.org/10.1109/LED.2015.2477421

    Article  ADS  Google Scholar 

  22. Xiong H, Ling S, Li Y et al (2022) Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. J Colloid Interface Sci 608:1126–1134. https://doi.org/10.1016/j.jcis.2021.10.126

    Article  ADS  Google Scholar 

  23. Lefevre G, Dewolf T, Guillaume N et al (2021) Nano-analytical investigation of the forming process in an HfO2-based resistive switching memory. J Appl Phys 130:244501. https://doi.org/10.1063/5.0072343

    Article  ADS  Google Scholar 

  24. Khan MU, Hassan G, Bae J (2019) Non-volatile resistive switching based on zirconium dioxide: poly (4-vinylphenol) nano-composite. Appl Phys A 125:378. https://doi.org/10.1007/s00339-019-2659-9

    Article  ADS  Google Scholar 

  25. Li W, Zhu H, Sun T et al (2022) High on/off ratio organic resistive switching memory based on carbazolyl dicyanobenzene and a polymer composite. J Phys Chem C 126:12897–12905. https://doi.org/10.1021/acs.jpcc.2c03641

    Article  Google Scholar 

  26. Kwon D-H, Kim KM, Jang JH et al (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech 5:148–153. https://doi.org/10.1038/nnano.2009.456

    Article  ADS  Google Scholar 

  27. Chen A, Haddad S, Wu Y-C, et al (2005) Non-volatile resistive switching for advanced memory applications. In: IEEE international electron devices meeting, 2005. IEDM Technical Digest. pp 746–749. https://doi.org/10.1109/IEDM.2005.1609461

  28. Hmar JJL (2020) Non-volatile resistive switching memory device based on ZnO-graphene oxide embedded in a polymer matrix fabricated on a flexible PET substrate. Microelectron Eng 233:111436. https://doi.org/10.1016/j.mee.2020.111436

    Article  Google Scholar 

  29. Ryu H, Kim S (2021) Volatile resistive switching characteristics of Pt/HfO2/TaOx/TiN short-term memory device. Metals 11:1207. https://doi.org/10.3390/met11081207

    Article  Google Scholar 

  30. Sun Y, Wen D (2019) Nonvolatile WORM and rewritable multifunctional resistive switching memory devices from poly(4-vinyl phenol) and 2-amino-5-methyl-1,3,4-thiadiazole composite. J Alloy Compd 806:215–226. https://doi.org/10.1016/j.jallcom.2019.07.217

    Article  Google Scholar 

  31. Banik H, Sarkar S, Bhattacharjee D, Hussain SA (2021) Transient WORM memory device using biocompatible protamine sulfate with very high data retention and stability. ACS Appl Electron Mater 3:5248–5256. https://doi.org/10.1021/acsaelm.1c00750

    Article  Google Scholar 

  32. Raeis-Hosseini N, Lee J-S (2016) Controlling the resistive switching behavior in starch-based flexible biomemristors. ACS Appl Mater Interfaces 8:7326–7332. https://doi.org/10.1021/acsami.6b01559

    Article  Google Scholar 

  33. Zhao E, Liu X, Liu G, Zhou B (2019) Triggering WORM/SRAM memory conversion by composite oxadiazole in polymer resistive switching device. J Nanomater 2019:e9214186. https://doi.org/10.1155/2019/9214186

    Article  Google Scholar 

  34. Ercan E, Chen J-Y, Tsai P-C et al (2017) A redox-based resistive switching memory device consisting of organic-inorganic hybrid perovskite/polymer composite thin film. Adv Electron Mater 3:1700344. https://doi.org/10.1002/aelm.201700344

    Article  Google Scholar 

  35. Stecconi T, Guido R, Berchialla L et al (2022) Filamentary TaOx/HfO2 ReRAM devices for neural networks training with analog in-memory computing. Adv Electron Mater 8:2200448. https://doi.org/10.1002/aelm.202200448

    Article  Google Scholar 

  36. Rajan K, Bocchini S, Chiappone A et al (2017) WORM and bipolar inkjet printed resistive switching devices based on silver nanocomposites. Flex Print Electron 2:024002. https://doi.org/10.1088/2058-8585/aa64be

    Article  Google Scholar 

  37. Zahoor F, Azni Zulkifli TZ, Khanday FA (2020) Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res Lett 15:1–26. https://doi.org/10.1186/s11671-020-03299-9

    Article  Google Scholar 

  38. Kryder MH, Kim CS (2009) After hard drives—What comes next? IEEE Trans Magn 45:3406–3413. https://doi.org/10.1109/TMAG.2009.2024163

    Article  ADS  Google Scholar 

  39. Lewis DL, Lee H-HS (2009) Architectural evaluation of 3D stacked RRAM caches. In: 2009 IEEE international conference on 3D system integration. pp 1–4. https://doi.org/10.1109/3DIC.2009.5306582

  40. Lee HY, Chen YS, Chen PS, et al. (2010) Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. In: 2010 international electron devices meeting. pp 19.7.1–19.7.4. https://doi.org/10.1109/IEDM.2010.5703395

  41. Zhang Q, He J, Zhuang H et al (2016) Rational design of small molecules to implement organic quaternary memory devices. Adv Funct Mater 26:146–154. https://doi.org/10.1002/adfm.201503493

    Article  Google Scholar 

  42. Cai Y, Tan J, YeFan L et al (2016) A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 27:275206. https://doi.org/10.1088/0957-4484/27/27/275206

    Article  Google Scholar 

  43. Yasmin Rahman F, Sarkar S, Banik H et al (2022) Investigation of non volatile resistive switching behaviour using rose petal. Mater Today Proc 65:2693–2697. https://doi.org/10.1016/j.matpr.2022.05.341

    Article  Google Scholar 

  44. Liu X, Shi M, Luo Y et al (2020) Degradable and dissolvable thin-film materials for the applications of new-generation environmental-friendly electronic devices. Appl Sci 10:1320. https://doi.org/10.3390/app10041320

    Article  Google Scholar 

  45. Fang SL, Liu WH, Li X et al (2019) Biodegradable transient resistive random-access memory based on MoO3/MgO/MoO3 stack. Appl. Phys. Lett. 115:244102. https://doi.org/10.1063/1.5129542

    Article  ADS  Google Scholar 

  46. Lee B-H, Lee D-I, Bae H et al (2016) Foldable and disposable memory on paper. Sci Rep 6:38389. https://doi.org/10.1038/srep38389

    Article  ADS  Google Scholar 

  47. Lv Z, Zhou Y, Han S-T, Roy VAL (2018) From biomaterial-based data storage to bio-inspired artificial synapse. Mater Today 21:537–552. https://doi.org/10.1016/j.mattod.2017.12.001

    Article  Google Scholar 

  48. Lim ZX, Cheong KY (2018) Nonvolatile memory device based on bipolar and unipolar resistive switching in bio-organic aloe polysaccharides thin film. Adv Mater Technol 3:1800007. https://doi.org/10.1002/admt.201800007

    Article  Google Scholar 

  49. Qi Y, Sun B, Fu G et al (2019) A nonvolatile organic resistive switching memory based on lotus leaves. Chem Phys 516:168–174. https://doi.org/10.1016/j.chemphys.2018.09.008

    Article  Google Scholar 

  50. Lin K-W, Wang T-Y, Chang Y-C (2021) Impact of top electrodes on the nonvolatile resistive switching properties of citrus thin films. Polymers 13:710. https://doi.org/10.3390/polym13050710

    Article  Google Scholar 

  51. Ranjan S, Sun B, Zhou G et al (2020) Passive filters for nonvolatile storage based on capacitive-coupled memristive effects in nanolayered organic-inorganic heterojunction devices. ACS Appl Nano Mater 3:5045–5052. https://doi.org/10.1021/acsanm.0c00173

    Article  Google Scholar 

  52. Lim ZX, Sreenivasan S, Wong YH et al (2016) Effects of electrode materials on charge conduction mechanisms of memory device based on natural aloe vera. MRS Adv 1:2513–2518. https://doi.org/10.1557/adv.2016.522

    Article  Google Scholar 

  53. Lim ZX, Cheong KY (2015) Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Phys Chem Chem Phys 17:26833–26853. https://doi.org/10.1039/C5CP04622J

    Article  Google Scholar 

  54. Lim ZX, Sreenivasan S, Wong YH, Cheong KY (2017) Aloe vera in active and passive regions of electronic devices towards a sustainable development. AIP Conf Proc 1865:050006. https://doi.org/10.1063/1.4993371

    Article  Google Scholar 

  55. Lim ZX, Sreenivasan S, Wong YH et al (2017) Filamentary conduction in aloe vera film for memory application. Procedia Eng 184:655–662. https://doi.org/10.1016/j.proeng.2017.04.133

    Article  Google Scholar 

  56. Sun B, Zhu S, Mao S et al (2018) From dead leaves to sustainable organic resistive switching memory. J Colloid Interface Sci 513:774–778. https://doi.org/10.1016/j.jcis.2017.12.007

    Article  ADS  Google Scholar 

  57. Li T, Xu Y, Lei M et al (2020) The pH-controlled memristive effect in a sustainable bioelectronic device prepared using lotus root. Mater Today Sustain 7–8:100029. https://doi.org/10.1016/j.mtsust.2019.100029

    Article  Google Scholar 

  58. Adhikari RY, Harmon NE, Williams KP (2021) Pristine leaf based electrochemical resistive switching device. Appl Mater Today 24:101077. https://doi.org/10.1016/j.apmt.2021.101077

    Article  Google Scholar 

  59. Xu Y, Tan L, Sun B et al (2020) Memristive effect with non-zero-crossing current-voltage hysteresis behavior based on Ag doped Lophatherum gracile Brongn. Curr Appl Phys 20:545–549. https://doi.org/10.1016/j.cap.2020.02.002

    Article  ADS  Google Scholar 

  60. Zhu S, Sun B, Chen Y et al (2019) An excellent pH-controlled resistive switching memory device based on self-colored (C7H7O4N)n extracted from a lichen plant. J Mater Chem C 7:7593–7600. https://doi.org/10.1039/C8TC06207B

    Article  Google Scholar 

  61. Zeng Y, Sun B, Yu H-Y et al (2019) A sustainable biomemristive memory device based on natural collagen. Mater Today Chem 13:18–24. https://doi.org/10.1016/j.mtchem.2019.04.008

    Article  ADS  Google Scholar 

  62. Volkov AG, Nyasani EK, Blockmon AL, Volkova MI (2015) Memristors: memory elements in potato tubers. Plant Signal Behav 10:e1071750. https://doi.org/10.1080/15592324.2015.1071750

    Article  Google Scholar 

  63. Wang X, Tian S, Sun B et al (2018) From natural biomaterials to environment-friendly and sustainable nonvolatile memory device. Chem Phys 513:7–12. https://doi.org/10.1016/j.chemphys.2018.06.013

    Article  ADS  Google Scholar 

  64. Zheng L, Sun B, Mao S et al (2018) Metal ions redox induced repeatable nonvolatile resistive switching memory behavior in biomaterials. ACS Appl Bio Mater 1:496–501. https://doi.org/10.1021/acsabm.8b00226

    Article  Google Scholar 

  65. Abbasi MS, Irshad MS, Arshad N et al (2020) Biomaterial-induced stable resistive switching mechanism in TiO2 thin films: the role of active interstitial sites/ions in minimum current leakage and superior bioactivity. ACS Omega 5:19050–19060. https://doi.org/10.1021/acsomega.0c02410

    Article  Google Scholar 

  66. Chang Y-C, Jian J-C, Chuang MY et al (2020) Metal and carbon filaments in biomemory devices through controlling the Al/Apple pectin interface. ACS Appl Electron Mater 2:2798–2805. https://doi.org/10.1021/acsaelm.0c00483

    Article  Google Scholar 

  67. Sun B, Guo T, Zhou G et al (2021) A battery-like self-selecting biomemristor from earth-abundant natural biomaterials. ACS Appl Bio Mater 4:1976–1985. https://doi.org/10.1021/acsabm.1c00015

    Article  Google Scholar 

  68. Guo Y, Hu W, Zeng F et al (2020) Ultrafast degradable resistive switching memory based on α-lactose thin films. Organ Electron 83:105750. https://doi.org/10.1016/j.orgel.2020.105750

    Article  Google Scholar 

  69. Mao S, Sun B, Yu T et al (2019) pH-Modulated memristive behavior based on an edible garlic-constructed bio-electronic device. New J Chem 43:9634–9640. https://doi.org/10.1039/C9NJ02433F

    Article  Google Scholar 

  70. Sivkov AA, Xing Y, Cheong KY et al (2020) Investigation of honey thin film as a resistive switching material for nonvolatile memories. Mater Lett 271:127796. https://doi.org/10.1016/j.matlet.2020.127796

    Article  Google Scholar 

  71. Zheng L, Sun B, Chen Y et al (2018) The redox of hydroxyl-assisted metallic filament induced resistive switching memory based on a biomaterial-constructed sustainable and environment-friendly device. Mater Today Chem 10:167–174. https://doi.org/10.1016/j.mtchem.2018.09.002

    Article  Google Scholar 

  72. Zhu S, Zhou G, Yuan W et al (2020) Non-zero-crossing current-voltage hysteresis behavior induced by capacitive effects in bio-memristor. J Colloid Interface Sci 560:565–571. https://doi.org/10.1016/j.jcis.2019.10.087

    Article  ADS  Google Scholar 

  73. Gurme ST, Dongale TD, Surwase SN et al (2018) An organic bipolar resistive switching memory device based on natural melanin synthesized from Aeromonas sp. SNS. Phys Status Solidi (A) 215:1800550. https://doi.org/10.1002/pssa.201800550

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SAH is grateful to DST, for financial support to carry out this research work through DST, Govt. of India project ref. No. CRG/2021/004073. The authors are also grateful to UGC, Govt. of India for financial support to carry out this research work through financial assistance under UGC—SAP program 2016.

Funding

Syed Arshad Hussain reports financial support, administrative support, equipment, drugs, or supplies, statistical analysis, and writing assistance were provided by Tripura University. Syed Arshad Hussain reports a relationship with Department of Science and Technology, Govt. of India, UGC-SAP program 2016 that includes funding grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Arshad Hussain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement: This paper is a review on resistive switching using natural materials. Such devices are very promising for future electronic application with sustainable solution toward e-waste. This paper has been submitted as a part of the special issue “Advances in Memory Material.”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, F.Y., Bhattacharjee, D. & Hussain, S.A. An Account of Natural Material-Based Nonvolatile Memory Device. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 497–510 (2023). https://doi.org/10.1007/s40010-023-00830-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00830-2

Keywords

Navigation