Skip to main content
Log in

Effects of Electrode Materials on Charge Conduction Mechanisms of Memory Device Based on Natural Aloe Vera

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Resistive switching behaviors in Aloe vera films are being explored for nonvolatile memory applications. A simple structure in which the Aloe vera films sandwiched in between a top and bottom electrode are used. The switching behaviors of the devices in which the Aloe vera film is dried at different temperatures and the roles of top electrode materials (Al and Ag) are investigated. Current density–voltage measurements reveal that filamentary conduction is the dominant conduction process inducing resistive switching characteristics in Aloe vera films. Device with Al-top electrode requires a forming voltage higher than devices with Ag-top electrode, due to the tendency of oxide formation of these materials. The resistive switching behaviors are highly reproducible, as demonstrated by the data retention performance over an interval of 104 s and endurance capability of over 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bauer and M. Kaltenbrunner, ACS Nano 8, 5380–5382 (2014).

    Article  CAS  Google Scholar 

  2. M. Irimia-Vladu, Chem. Soc. Rev. 43, 588–610 (2014).

    Article  CAS  Google Scholar 

  3. S. Mühl and B. Beyer, Electronics 3, 444–461 (2014).

    Article  Google Scholar 

  4. N. Savage, IEEE Spectrum 52, 18 (2015).

    Article  Google Scholar 

  5. E. R. Rodríguez, J. D. Martín and C. D. Romero, Crit. Rev. Food Sci. Nutr. 50, 305–326 (2010).

    Article  Google Scholar 

  6. A. G. Volkov, J. C. Foster, E. Jovanov and V. S. Markin, Bioelectrochemistry 81, 4–9 (2011).

    Article  CAS  Google Scholar 

  7. L. Q. Khor and K. Y. Cheong, J. Mater. Sci. Mater. Electron. 24, 2646–2652 (2013).

    Article  CAS  Google Scholar 

  8. L. Q. Khor and K. Y. Cheong, ECS J. Solid State Sci. Technol. 2, P440–P444 (2013).

    Article  CAS  Google Scholar 

  9. A. G. Volkov, J. Reedus, C. M. Mitchell, C. Tucket, V. Forde-Tuckett, M. I. Volkova, V. S. Markin and L. Chua, Plant Signaling Behav. 9, e29056 (2014).

    Article  Google Scholar 

  10. W. F. Lim, H. J. Quah, S. Sreenivasan and K. Y. Cheong, Mater. Technol. 30, A29–A35 (2015).

    Article  CAS  Google Scholar 

  11. Z. X. Lim and K. Y. Cheong, Phys. Chem. Chem. Phys. 17, 26833–26853 (2015).

    Article  CAS  Google Scholar 

  12. Y. Ko, Y. Kim, H. Baek and J. Cho, ACS Nano 5, 9918–9926 (2011).

    Article  CAS  Google Scholar 

  13. H. Baek, C. Lee, K.-I. Lim and J. Cho, Nanotechnology 23, 155604 (2012).

    Article  Google Scholar 

  14. M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu and C. K. Maiti, Adv. Funct. Mater. 22, 4493–4499 (2012).

    Article  CAS  Google Scholar 

  15. N. Gogurla, S. P. Mondal, A. K. Sinha, A. K. Katiyar, W. Banerjee, S. C. Kundu and S. K. Ray, Nanotechnology 24, 345202 (2013).

    Article  Google Scholar 

  16. K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, W. Vandervorst, T. Kitaoka, M. Nogi and T. Yanagida, Sci. Rep. 4, 5532 (2014).

    Article  CAS  Google Scholar 

  17. Y.-C. Chang and Y.-H. Wang, ACS Appl. Mater. Interfaces 6, 5413–5421 (2014).

    Article  CAS  Google Scholar 

  18. N. R. Hosseini and J.-S. Lee, ACS Nano 9, 419–426 (2014).

    Article  Google Scholar 

  19. Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu and Y.-K. Su, Sci. Rep. 5, 10022 (2015).

    Article  CAS  Google Scholar 

  20. N. R. Hosseini and J.-S. Lee, ACS Appl. Mater. Interfaces 8, 7325–7332 (2016).

    Google Scholar 

  21. X.-J. Zhu, J. Shang and R.-W. Li, Front. Mater. Sci. 6, 183–206 (2012).

    Article  Google Scholar 

  22. D. R. Lide, CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, Bota Raton, FL, 2004) ch. 8, pp. 23–28.

    Google Scholar 

  23. T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe and C. Adachi, Appl. Phys. Lett. 83, 1252 (2003).

    Article  CAS  Google Scholar 

  24. M. Cölle, M. Büchel and D. M. de Leeuw, Org. Electron. 7, 305–312 (2006).

    Article  Google Scholar 

  25. F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Cölle, M. Büchel and D. M. de Leeuw, Appl. Phys. Lett. 91, 192103 (2007).

    Article  Google Scholar 

  26. T. Kever, U. Böttger, C. Schindler and R. Waser, Appl. Phys. Lett. 91, 083506 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Z.X., Sreenivasan, S., Wong, Y.H. et al. Effects of Electrode Materials on Charge Conduction Mechanisms of Memory Device Based on Natural Aloe Vera. MRS Advances 1, 2513–2518 (2016). https://doi.org/10.1557/adv.2016.522

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.522

Navigation