Skip to main content
Log in

Investigation of the Maier–Saupe–Zwanzig Model in the Apollonian Network

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We analyze the thermodynamic behavior of a discrete version of the Maier–Saupe model for the nematic phase transitions in liquid crystals in the Apollonian network. This simple model, which we call Maier–Saupe–Zwanzig (MSZ) model, has been investigated in a variety of situations and geometric substrates. In terms of a single energy parameter, it has been shown to account for the well-known transition between uniaxially ordered and disordered phases in nematic liquid crystals. We consider a special Apollonian lattice, and use an exact transfer matrix approach, to investigate the occurrence of these phase transitions. We obtain numerical precise results for the free energy and its derivatives, as well as for the correlation lengths, which come from the iterations of recursion relations for the transfer matrix elements of successive generations of the lattice. Results are compared with similar findings on a diamond hierarchical lattice. In contrast with the diamond lattice, and in agreement with similar analyses for the Ising model, we find some special thermodynamic features, including peculiar behavior of the correlations functions, but no singular behavior of the free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

A Supplementary Material file is available as indicated in [42].

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford University Press, Oxford New York, 1993)

    Google Scholar 

  2. S. Singh, Phase transitions in liquid crystals. Phys. Rep. 324(2), 107–269 (2000). https://doi.org/10.1016/S0370-1573(99)00049-6

    Article  ADS  Google Scholar 

  3. F. Yang, J.R. Sambles, Physical investigations of biaxial nematic liquid crystals, chap. 13, pp. 1–34. American Cancer Society (2014). https://doi.org/10.1002/9783527671403.hlc052

  4. E.M. Rafael, D. Corbett, A. Cuetos, A. Patti, Self-assembly of freely-rotating polydisperse cuboids: unveiling the boundaries of the biaxial nematic phase. Soft Matter 16, 5565–5570 (2020). https://doi.org/10.1039/D0SM00484G

    Article  ADS  Google Scholar 

  5. E.J. Davis, J.W. Goodby, Classification of liquid crystals according so symmetry, chap. 2, pp. 1–32. American Cancer Society (2014). https://doi.org/10.1002/9783527671403.hlc003

  6. M.J. Freiser, Ordered states of a nematic liquid. Phys. Rev. Lett. 24, 1041–1043 (1970). https://doi.org/10.1103/PhysRevLett.24.1041

    Article  ADS  Google Scholar 

  7. L.J. Yu, A. Saupe, Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Phys. Rev. Lett. 45, 1000–1003 (1980). https://doi.org/10.1103/PhysRevLett.45.1000

    Article  ADS  Google Scholar 

  8. M. Chiappini, T. Drwenski, R. van Roij, M. Dijkstra, Biaxial, twist-bend, and splay-bend nematic phases of banana-shaped particles revealed by lifting the smectic blanket. Phys. Rev. Lett. 123, 068001 (2019). https://doi.org/10.1103/PhysRevLett.123.068001

    Article  ADS  Google Scholar 

  9. Y.K. Kim, G. Cukrov, F. Vita, E. Scharrer, E.T. Samulski, O. Francescangeli, O.D. Lavrentovich, Search for microscopic and macroscopic biaxiality in the cybotactic nematic phase of new oxadiazole bent-core mesogens. Phys. Rev. E 93, 062701 (2016)

    Article  ADS  Google Scholar 

  10. J.A. Olivares, S. Stojadinovic, T. Dingemans, S. Sprunt, A. Jákli, Optical studies of the nematic phase of an oxazole-derived bent-core liquid crystal. Phys. Rev. E 68, 041704 (2003)

    Article  ADS  Google Scholar 

  11. B.R. Acharya, A. Primak, S. Kumar, Biaxial nematic phase in bent-core thermotropic mesogens. Phys. Rev. Lett. 92, 145506 (2004). https://doi.org/10.1103/PhysRevLett.92.145506

    Article  ADS  Google Scholar 

  12. G. Luckhurst, Biaxial nematic liquid crystals: fact or fiction? Thin Solid Films 393(1), 40–52 (2001). https://doi.org/10.1016/S0040-6090(01)01091-4

    Article  ADS  Google Scholar 

  13. G.R. Luckhurst, A missing phase found at last? Nature 430, 413–414 (2004). https://doi.org/10.1038/430413a

    Article  ADS  Google Scholar 

  14. L.A. Madsen, T.J. Dingemans, M. Nakata, E.T. Samulski, Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505 (2004). https://doi.org/10.1103/PhysRevLett.92.145505

    Article  ADS  Google Scholar 

  15. E. van den Pol, A.V. Petukhov, D.M.E. Thies-Weesie, D.V. Byelov, G.J. Vroege, Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles. Phys. Rev. Lett. 103, 258301 (2009). https://doi.org/10.1103/PhysRevLett.103.258301

    Article  ADS  Google Scholar 

  16. W. Maier, A. Saupe, 15(4), 287–292 (1960). https://doi.org/10.1515/zna-1960-0401

  17. R. Zwanzig, First order phase transition in a gas of long thin rods. J. Chem. Phys. 39(7), 1714–1721 (1963). https://doi.org/10.1063/1.1734518

    Article  ADS  Google Scholar 

  18. S. Belli, A. Patti, M. Dijkstra, R. van Roij, Polydispersity stabilizes biaxial nematic liquid crystals. Phys. Rev. Lett. 107, 148303 (2011). https://doi.org/10.1103/PhysRevLett.107.148303

    Article  ADS  Google Scholar 

  19. Z. Chen, J.M. Deutch, Biaxial nematic phase, multiphase critical point, and reentry transition in binary liquid crystal mixtures. J. Chem. Phys. 80(5), 2151–2162 (1984). https://doi.org/10.1063/1.446925

    Article  ADS  Google Scholar 

  20. M.J. de Oliveira, A.M. Figueiredo Neto, Reentrant isotropic-nematic transition in lyotropic liquid crystals. Phys. Rev. A 34, 3481 (1986)

    Article  ADS  Google Scholar 

  21. E.F. Henriques, V.B. Henriques, Biaxial phases in polydisperse mean-field model solution of uniaxial micelles. J. Chem. Phys. 107(19), 8036–8040 (1997). https://doi.org/10.1063/1.475067

    Article  ADS  Google Scholar 

  22. A.B.L. op Reinink, S. Belli, R. van Roij, M. Dijkstra, A.V. Petukhov, G.J. Vroege, Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field. Soft Matter 10, 446–456 (2014). https://doi.org/10.1039/C3SM52242C

  23. R.A. Sauerwein, M.J. de Oliveira, Lattice model for biaxial and uniaxial nematic liquid crystals. J. Chem. Phys. 144(19), 194904 (2016). https://doi.org/10.1063/1.4948627

    Article  ADS  Google Scholar 

  24. C. Shih, R. Alben, Lattice model for biaxial liquid crystals. J. Chem. Phys. 57(8), 3055–3061 (1972). https://doi.org/10.1063/1.1678719

    Article  ADS  Google Scholar 

  25. M.P. Taylor, J. Herzfeld, Nematic and smectic order in a fluid of biaxial hard particles. Phys. Rev. A 44, 3742–3751 (1991). https://doi.org/10.1103/PhysRevA.44.3742

    Article  ADS  Google Scholar 

  26. E. do Carmo, D.B. Liarte, S.R. Salinas, Statistical models of mixtures with a biaxial nematic phase. Phys. Rev. E 81, 062701 (2010). https://doi.org/10.1103/PhysRevE.81.062701

  27. E. do Carmo, A.P. Vieira, S.R. Salinas, Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice. Phys. Rev. E 83, 011701 (2011). https://doi.org/10.1103/PhysRevE.83.011701

  28. E.S. Nascimento, E.F. Henriques, A.P. Vieira, S.R. Salinas, Maier-Saupe model for a mixture of uniaxial and biaxial molecules. Phys. Rev. E 92, 062503 (2015). https://doi.org/10.1103/PhysRevE.92.062503

    Article  ADS  Google Scholar 

  29. E.S. Nascimento, A.P. Vieira, S.R. Salinas, Lattice statistical models for the nematic transitions in liquid-crystalline systems. Braz. J. Phys. 46, 664–671 (2016). https://doi.org/10.1007/s13538-016-0451-2

    Article  ADS  Google Scholar 

  30. A. Petri, S.R. Salinas, Field-induced uniaxial and biaxial nematic phases in the Maier-Saupe-Zwanzig (MSZ) lattice model. Liq. Cryst. 45(7), 980–992 (2018). https://doi.org/10.1080/02678292.2017.1404151

    Article  Google Scholar 

  31. S.R. Salinas, E.S. Nascimento, Elementary lattice models for the nematic transitions in liquid-crystalline systems. Mol. Cryst. Liq. Cryst. 657(1), 27–33 (2017). https://doi.org/10.1080/15421406.2017.1402640

    Article  Google Scholar 

  32. C.T.G. dos Santos, A.P. Vieira, S.R. Salinas, R.F.S. Andrade, Real-space renormalization-group treatment of the Maier-Saupe-Zwanzig model for biaxial nematic structures. Phys. Rev. E 103, 032111 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Boccara, R. Mejdani, L. De Seze, Solvable model exhibiting a first-order phase transition. J. de Physique 38(2), 149–151 (1977). https://doi.org/10.1051/jphys:01977003802014900

    Article  Google Scholar 

  34. A.M. Sonnet, E.G. Virga, G.E. Durand, Dielectric shape dispersion and biaxial transitions in nematic liquid crystals. Phys. Rev. E 67, 061701 (2003). https://doi.org/10.1103/PhysRevE.67.061701

    Article  ADS  MathSciNet  Google Scholar 

  35. J.S. Andrade, H.J. Herrmann, R.F.S. Andrade, L.R. da Silva, Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Phys. Rev. Lett. 94, 018702 (2005). https://doi.org/10.1103/PhysRevLett.94.018702

    Article  ADS  Google Scholar 

  36. R.F.S. Andrade, J.S. Andrade, H.J. Herrmann, Phys. Rev. E 79, 036105 (2009)

    Article  ADS  Google Scholar 

  37. R.F.S. Andrade, H.J. Herrmann, Magnetic models on Apollonian networks. Phys. Rev. E 71, 056131 (2005). https://doi.org/10.1103/PhysRevE.71.056131

    Article  ADS  MathSciNet  Google Scholar 

  38. N.A.M. Araújo, R.F.S. Andrade, H.J. Herrmann, q-state Potts model on Apollonian network. Phys. Rev. E 82, 046109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. I.N. de Oliveira, F.A.B.F. de Moura, M.L. Lyra, J.S. Andrade, E.L. Albuquerque, Free-electron gas in the Apollonian network: Multifractal energy spectrum and its thermodynamic fingerprints. Phys. Rev. E 79, 016104 (2009). https://doi.org/10.1103/PhysRevE.79.016104

    Article  ADS  Google Scholar 

  40. I.N. de Oliveira, F.A.B.F. de Moura, M.L. Lyra, J.S. Andrade, E.L. Albuquerque, Bose-Einstein condensation in the Apollonian complex network. Phys. Rev. E 81, 030104 (2010). https://doi.org/10.1103/PhysRevE.81.030104

    Article  Google Scholar 

  41. M. Serva, U.L. Fulco, E.L. Albuquerque, Exact solutions and infinite-order phase transitions for a general class of Ising models on the regularized Apollonian network. J. Stat. Mech. Theory Exp. 2014(1), P01010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. C.T.G. dos Santos, A.P. Vieira, S.R. Salinas, R.F.S. Andrade. Investigation of the Maier–Saupe–Zwanzig model in the ApollonianNetwork. Braz. J. Phys. https://doi.org/10.1007/s13538-023-01297-7

Download references

Funding

 This work was supported by the following Brazilian agencies and institutions: the National Council for Scientific and Technological Development (CNPq) through grants 465259/2014-6 (APV and SRS), 422561/2018-5 and 304257/2019-2 (RFSA); the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology Complex Fluids (INCT-FCx), the National Institute of Science and Technology for Complex Systems (INCT-SC), and the São Paulo Research Foundation (FAPESP – 2014/50983-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero T. G. dos Santos.

Ethics declarations

Ethics Approval

This work uses no data related to humans or laboratory experiments with animals that require approval by a ethical committee.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on From Equilibrium Statistical Physics to Complex Systems: A Special Issue in Honor of Silvio R. Salinas

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 658 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T. G. dos Santos, C., P. Vieira, A., R. Salinas, S. et al. Investigation of the Maier–Saupe–Zwanzig Model in the Apollonian Network. Braz J Phys 53, 98 (2023). https://doi.org/10.1007/s13538-023-01297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01297-7

Keywords

Navigation