Skip to main content
Log in

Green synthesis of bimetallic Se@TiO2NPs and their formulation into biopolymers and their utilization as antimicrobial, anti-diabetic, antioxidant, and healing agent in vitro

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A promising combination of two nanoparticles that typically exhibit synergetic behaviors is called bimetallic nanoparticles. The synthesis of bimetallic selenium and titanium oxide nanoparticles (Se@TiO2NPs) in the current work was carried out using green creator Talaromyces pinophilus. A green technique was employed to create formulated nanoparticles into biopolymers (nanocomposite) using carboxymethylcellulose and starch. Se@TiO2NPs and nanocomposite characteristics were carried out via physicochemical including FITR and XRD and topographical characterization including FESEM and HRTEM. Se@TiO2NPs diameters were 25 nm and the nanocomposite was noticed as a nano matrix and was found to have confirmed nanostructures. More inhibitory action was observed using nanocomposite than Se@TiO2NPs against Staphylococcus aureus, Salmonella typhi, Enterococcus faecalis, Candida albicans, Aspergillus flavus, and Mucor circinelloid with inhibition zones of 21, 23, 25, 29, 16, and 18 mm using nanocomposite, while it was 19, 21, 24, 26, 13, and 12 mm using Se@TiO2NPs, respectively. Nanocomposite revealed low values of MIC (62.5, 31.25, and 7.8 µg/mL) in contrast to the MIC values of Se@TiO2NPs (125, 62.5, and 15.62 µg/mL) toward S. aureus, S. typhi, and C. albicans, respectively. DPPH scavenging % and α-amylase inhibition % were more affected by nanocomposite (IC50, 41.40 µg/mL and 8.82 µg/mL, respectively) than Se@TiO2NPs (IC50, 103.41 µg/mL and IC50, 12.96 µg/mL, respectively). Moreover, healing properties of nanocomposite were better than Se@TiO2NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kunwar S, Roy A, Bhusal U, Gacem A, Abdullah MM, Sharma P, ... Jeon BH (2023) Bio-fabrication of Cu/Ag/Zn nanoparticles and their antioxidant and dye degradation activities. Catalysts, 13(5), 891.

  2. Walunj P, Roy A, Jadhav V, Athare P, Dhaygude A, Aher J, ... Jeon BH (2023) Polyol-mediated zinc oxide nanoparticles using the refluxing method as an efficient photocatalytic and antimicrobial agent. Front Bioeng Biotechnol 11:1177981

  3. Bhusal U, Roy A, Kunwar S (2023) Bio-fabrication of Cu/Fe/Zn nanoparticles and its antioxidant and catalytic activity. Chem Pap 77(11):7099–7111

    Article  CAS  Google Scholar 

  4. Yahya R, Al-Rajhi AMH, Alzaid SZ, Al Abboud MA, Almuhayawi MS, Al Jaouni SK, Selim S et al (2022) Molecular docking and efficacy of aloe vera gel based on Chitosan nanoparticles against Helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers 14:2994. https://doi.org/10.3390/polym14152994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mahmood A, Mahmood A, Sarfraz RM, Hussain Z, Afzal A, Boublia A, ... Benguerba Y (2024) Chitosan-based intelligent polymeric networks for site-specific colon medication delivery: a comprehensive study on controlled release of diloxanide furoate and network formation dynamics. Int J Biol Macromol 255:128089.

  6. Hasanin MS (2022) Cellulose‐based biomaterials: chemistry and biomedical applications. Starch‐Stärke, 2200060

  7. Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, . . . Ahmed MB (2021) Recent developments of carboxymethyl cellulose. Polymers 13(8):1345

  8. Paria A, Rai VK (2022) The fate of carboxymethyl cellulose as a polymer of pharmaceutical importance. Biol Sci 2(2):204–215

    Google Scholar 

  9. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Ma M (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740

    Article  CAS  Google Scholar 

  10. Hasanin MS (2021) Simple, economic, ecofriendly method to extract starch nanoparticles from potato peel waste for biological applications. Starch‐Stärke 2100055. https://doi.org/10.1002/star.202100055

  11. Malik MK, Bhatt P, Kumar T, Singh J, Kumar V, Faruk A, Kumar S (2023) Significance of chemically derivatized starch as drug carrier in developing novel drug delivery devices. Nat Prod J 13(6):40–53

    Google Scholar 

  12. Abdelghany TM, Al-Rajhi AMH, Al Abboud MA et al (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoSci. 8:5–16. https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  13. Rotti RB, Sunitha DV, Manjunath R, Roy A, Mayegowda SB, Gnanaprakash AP, ... Khidir EB (2023) Green synthesis of MgO nanoparticles and its antibacterial properties. Front Chem 11:1143614

  14. Younis AB, Haddad Y, Kosaristanova L, Smerkova K (2023) Titanium dioxide nanoparticles: recent progress in antimicrobial applications. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 15(3):e1860. https://doi.org/10.1002/wnan.1860

    Article  CAS  Google Scholar 

  15. Abdelghany TM (2013) Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indones J Biotechnol 18(2):75–82

    Google Scholar 

  16. Abdelghany TM, Al-Rajhi AMH, Almuhayawi MS et al (2023) Green fabrication of nanocomposite doped with selenium nanoparticle–based starch and glycogen with its therapeutic activity: antimicrobial, antioxidant, and anti-inflammatory in vitro. Biomass Conv Bioref 13:445. https://doi.org/10.1007/s13399-022-03301-7

    Article  Google Scholar 

  17. Abdelghany TM, Al-Rajhi AM, Almuhayawi MS, Abada E, Al Abboud MA, Moawad H, Yahya R, Selim S (2023) Green fabrication of nanocomposite doped with selenium nanoparticle–based starch and glycogen with its therapeutic activity: antimicrobial, antioxidant, and anti-inflammatory in vitro. Biomass Convers Biorefinery 13:431–443

    Article  CAS  Google Scholar 

  18. Al-Rajhi AM, Salem SS, Alharbi AA, Abdelghany TM (2022) Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arab J Chem 15(7):103927. https://doi.org/10.1016/j.arabjc

    Article  CAS  Google Scholar 

  19. Al-Rajhi AMH, Yahya R, Bakri MM et al (2022) In situ green synthesis of Cu-doped ZnO based polymers nanocomposite with studying antimicrobial, antioxidant and anti-inflammatory activities. Appl Biol Chem 65:35. https://doi.org/10.1186/s13765-022-00702-0

    Article  CAS  Google Scholar 

  20. Ilyas M, Waris A, Khan AU, Zamel D, Yar L, Baset A, Ahmad A (2021) Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. Inorg Chem Commun 133:108968

    Article  CAS  Google Scholar 

  21. Bisht N, Phalswal P, Khanna PK (2022) Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv 3(3):1415–1431

    Article  CAS  Google Scholar 

  22. Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, ... Han J (2023) Selenium nanoparticles: properties, preparation methods, and therapeutic applications. Chemico-Biol Interact 110483.‏ https://doi.org/10.1016/j.cbi.2023.110483

  23. Al-Quraishy S, Dkhil MA, Abdel Moneim AE (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine 10:6741–6756. https://doi.org/10.2147/IJN.S91377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmed HH, Abd El-Maksoud MD, Abdel Moneim AE et al (2017) Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol Trace Elem Res 177:267–280. https://doi.org/10.1007/s12011-016-0876-z

    Article  CAS  PubMed  Google Scholar 

  25. Elsayed N, Hasanin MS, Abdelraof M (2022) Utilization of olive leaves extract coating incorporated with zinc/selenium oxide nanocomposite to improve the postharvest quality of green beans pods. Bioact Carbohydrates Diet Fibre 28:100333

    Article  CAS  Google Scholar 

  26. Belenov SV, Volochaev VA, Pryadchenko VV, Srabionyan VV, Shemet DB, Tabachkova NY et al (2017) Phase behavior of Pt-Cu nanoparticles with different architecture upon their thermal treatment. Nanotechnol Russia 12:147–155. https://doi.org/10.1134/S1995078017020033

    Article  CAS  Google Scholar 

  27. Alawlaqi MM, Al-Rajhi AMH et al (2023) Evaluation of biomedical applications for linseed extract: antimicrobial, antioxidant, anti-diabetic, and anti-inflammatory activities in vitro. J Funct Biomater 14(6):300. https://doi.org/10.3390/jfb14060300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. French GL (2006) Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J Antimicrob Chemother 58:1107

    Article  CAS  PubMed  Google Scholar 

  29. Qanash H, Yahya R, Bakri MM, Bazaid AS, Qanash S, Shater AF et al (2022) Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci Rep 12:5914

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Wickramaratne NM, Punchihewa JC, Wickramaratne DBM (2016) In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. Wickramaratne et al. BMC Complement Altern Med 16:466. https://doi.org/10.1186/s12906-016-1452-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martinotti S, Ranzato E (2020) Scratch wound healing assay. Methods Mol Biol 2109:225–229. https://doi.org/10.1007/7651_2019_259

    Article  CAS  PubMed  Google Scholar 

  32. Cavalu S, Antoniac IV, Fritea L, Mates IM, Milea C, Laslo V, Mohan A (2018) Surface modifications of the titanium mesh for cranioplasty using selenium nanoparticles coating. J Adhes Sci Technol 32(22):2509–2522

    Article  CAS  Google Scholar 

  33. Gebreslassie YT, Gebretnsae HG (2021) Green and cost-effective synthesis of tin oxide nanoparticles: a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett 16(1):97

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5(125):103036–103046

    Article  CAS  ADS  Google Scholar 

  35. Warren FJ, Gidley MJ, Flanagan BM (2016) Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohyd Polym 139:35–42

    Article  CAS  Google Scholar 

  36. Gupta H, Kumar H, Kumar M, Gehlaut AK, Gaur A, Sachan S, Park J-W (2020) Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material. Environ Eng Res 25(4):506–514

    Article  Google Scholar 

  37. Kumar B, Priyadarshi R, Sauraj Deeba F, Kulshreshtha A, Gaikwad KK, . . . Negi YS (2020) Nanoporous sodium carboxymethyl cellulose-g-poly (Sodium acrylate)/fecl3 hydrogel beads: synthesis and characterization. Gels 6(4):49

  38. Todica M, Nagy EM, Niculaescu C, Stan O, Cioica N, Pop CV (2016) XRD investigation of some thermal degraded starch based materials. J Spectrosc 2016:9605312

    Article  Google Scholar 

  39. Wang J, Guo K, Fan X, Feng G, Wei C (2018) Physicochemical properties of C-type starch from root tuber of Apios fortunei in comparison with maize, potato, and pea starches. Molecules 23(9):2132

    Article  PubMed  PubMed Central  Google Scholar 

  40. Al-Taweel SS, Saud HR (2016) New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method. J Chem Pharm Res 8(2):620–626

    CAS  Google Scholar 

  41. Zhang Y, Fu F, Li Y, Zhang D, Chen Y (2018) One-step synthesis of Ag@ TiO2 nanoparticles for enhanced photocatalytic performance. Nanomaterials 8(12):1032

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cruz LY, Wang D, Liu J (2019) Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J Photochem Photobiol, B 191:123–127

    Article  CAS  PubMed  Google Scholar 

  43. Fresneda MAR, Martín JD, Bolívar JG, Cantos MVF, Bosch-Estévez G, Moreno MFM, Merroun ML (2018) Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: impact on Se mobility within the concept of radioactive waste disposal. Environ Sci Nano 5(9):2103–2116

    Article  Google Scholar 

  44. Giannousi K, Menelaou M, Arvanitidis J, Angelakeris M, Pantazaki A, Dendrinou-Samara C (2015) Hetero-nanocomposites of magnetic and antifungal nanoparticles as a platform for magnetomechanical stress induction in Saccharomyces cerevisiae. J Mater Chem B 3(26):5341–5351

    Article  CAS  PubMed  Google Scholar 

  45. Song Y, Yang F, Ma M, Kang Y, Hui A, Quan Z, Wang A (2022) Green synthesized Se–ZnO/attapulgite nanocomposites using Aloe vera leaf extract: characterization, antibacterial and antioxidant activities. LWT 165:113762. https://doi.org/10.1016/j.lwt.2022.113762

    Article  CAS  Google Scholar 

  46. Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976. https://doi.org/10.1016/S1995-7645(14)60171-1

    Article  CAS  PubMed  Google Scholar 

  47. Anupong W, On-Uma R, Jutamas K, Salmen SH, Alharbi SA, Joshi D, Jhanani GK (2023) Antibacterial, antifungal, antidiabetic, and antioxidant activities potential of Coleus aromaticus synthesized titanium dioxide nanoparticles. Environ Res 216:114714

    Article  CAS  PubMed  Google Scholar 

  48. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Assem FM, Abd El-Salam MH (2018) Novel bionanocomposite materials used for packaging skimmed milk acid coagulated cheese (Karish). Int J Biol Macromol 115:1002–1011. https://doi.org/10.1016/j.ijbiomac.2018.04.165

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohyd Res 405:23–32. https://doi.org/10.1016/j.carres.2014.07.016

    Article  CAS  Google Scholar 

  50. Li B, Zhang Y, Yang Y, Qiu W, Wang X, Liu B, ... Sun G (2016) Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr Polym 152, 825–831.‏ https://doi.org/10.1016/j.carbpol.2016.07.070

  51. Rashid US, Simsek S, Kanel SR, Bezbaruah AN (2019) Modified tapioca starch for iron nanoparticle dispersion in aqueous media: potential uses for environmental remediation. SN Appl Sci 1:1379. https://doi.org/10.1007/s42452-019-1364-9

    Article  CAS  Google Scholar 

  52. Arora B, Bhatia R, Attri P (2018) 28—Bionanocomposites: green materials for a sustainable future. In: Hussain CM, Mishra AK, editors. New Polym. Nanocomposites Environ. Remediat. USA: Elsevier. pp. 699–712. https://doi.org/10.1016/B978-0-12-811033-1.00027-5

  53. Bilal M, Gul I, Basharat A, Qamar SA (2021) Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 176:540–557. https://doi.org/10.1016/j.ijbiomac.2021.02.107

    Article  CAS  PubMed  Google Scholar 

  54. Ismail NA, Amin KAM, Majid FAA, Razali MH (2019) Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng, C 103:109770. https://doi.org/10.1016/j.msec.2019.109770

    Article  CAS  Google Scholar 

  55. Youssef AM, El-Sayed HS, Islam EN, El-Sayed SM (2021) Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv 11(37):22571–22584. https://doi.org/10.1039/d1ra03819b

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Guan B, Yan R, Li R, Zhang X (2018) Selenium as a pleiotropic agent for medical discovery and drug delivery. Int J Nanomedicine 7473–7490.‏ https://doi.org/10.2147/IJN.S181343

  57. Ahmadi A, Ahmadi P, Sani MA, Ehsani A, Ghanbarzadeh B (2021) Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices. Int J Biol Macromol 175:87–97. https://doi.org/10.1016/j.ijbiomac.2021.01.135

    Article  CAS  PubMed  Google Scholar 

  58. Samyuktha PS, Ganapathy DM, Rajeshkumar S (2021) In vitro study of antidiabetic effect of green synthesised titanium dioxide nanoparticles. Nat Volatiles Essent Oils 8(4):7260–7270

  59. Mueller AS, Pallauf J (2006) Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17(8):548–560. https://doi.org/10.1016/j.jnutbio.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  60. Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203

    Article  CAS  PubMed  Google Scholar 

  61. Woo CH, Choi YC, Choi JS, Lee HY, Cho YW (2015) A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. J Biomater Sci Polym Ed 26(13):841–854

    Article  CAS  PubMed  Google Scholar 

  62. Bhattacharya D, Ghosh B, Mukhopadhyay M (2019) Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol 13(8):778–785. https://doi.org/10.1049/iet-nbt.2018.5312

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023015. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Author information

Authors and Affiliations

Authors

Contributions

Investigation and formal analysis, M.I.A. and S.A.A.; methodology, resources, writing—review and editing, A.S.B. and T.M.A.; all authors have approved to publish the paper.

Corresponding author

Correspondence to Tarek M. Abdelghany.

Ethics declarations

Institutional review board

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghonaim, M.I., Alsalamah, S.A., Mohammad, A.M. et al. Green synthesis of bimetallic Se@TiO2NPs and their formulation into biopolymers and their utilization as antimicrobial, anti-diabetic, antioxidant, and healing agent in vitro. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05451-2

Keywords

Navigation