Skip to main content
Log in

Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Using the methods of powder X-ray diffraction, transmission electron microscopy, and EXAFS spectroscopy, the phase behavior of bimetallic Pt–Cu nanoparticles with different architecture that are deposited on a highly disperse carbon carrier has been investigated during their thermal treatment in inert atmosphere. It is established that Pt–Cu nanoparticles with a Cu-core–Pt-shell structure rearrange into nanoparticles with a Pt–Cu solid-solution structure in the temperature range from 280 to 300°C. This transformation is accompanied by a sharp change in the unit-cell parameter. Such a change in the crystal lattice parameter does not occur during the thermal treatment of material with similar composition containing Pt–Cu nanoparticles with a solid-solution structure. The results can be used in elucidating the structure of Pt–M/C materials with different nanoparticle architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Liu, D. Wang, and Y. Li, “Synthesis and catalytic properties of bimetallic nanomaterials with various architectures,” Nano Today 7, 448–466 (2012).

    Article  Google Scholar 

  2. X. Liu and X. Liu, “Bimetallic nanoparticles: kinetic control matters,” Angew. Chem. Int. Ed. 51, 3311–3313 (2012).

    Article  Google Scholar 

  3. H. Ataee-Esfahani, M. Imura, and Y. Yamauchi, “Allmetal mesoporous nanocolloids: solution-phase syn- thesis of core–shell PdPt nanoparticles with a designed concave surface,” Angew. Chem., Int. Ed. 52, 13611–13615 (2013).

    Article  Google Scholar 

  4. S. Zhou, B. Varughese, B. Eichhorn, G. Jackson, and K. McIlwrath, “Pt–Cu core-shell and alloy nanoparticles for heterogeneous NOx reduction: Anomalous stability and reactivity of a core-shell nanostructure,” Angew. Chem. Int. Ed. 44, 4539–4543 (2005).

    Article  Google Scholar 

  5. N. Junga, D. Y. Chung, J. Ryu, S. J. Yoo, and Y. Eun, “Sung Pt-based nanoarchitecture and catalyst design for fuel cell applications,” Nano Today 9, 433–456 (2014).

    Article  Google Scholar 

  6. Z. Peng and H. Yang, “Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property,” Nano Today 4, 143–164 (2009).

    Article  Google Scholar 

  7. H. Yang, “Platinum-based electrocatalysts with coreshell nanostructures,” Angew. Chem. Int. Ed. 50, 2674–2676 (2011).

    Article  Google Scholar 

  8. R. N. Singh, R. Awasthi, and C. S. Sharm, “Review: An overview of recent development of platinum-based cathode materials for direct methanol fuel cells,” Int. J. Electrochem. Sci. 9, 5607–5639 (2014).

    Google Scholar 

  9. O. T. Holto and J. W. Stevenson, “The role of platinum in proton exchange membrane fuel cells,” Platinum Met. Rev. 4, 259–271 (2013).

    Article  Google Scholar 

  10. L. Xiong, A. M. Kannan, and A. Manthiram, “Pt–M (M = Fe, Co, Ni, and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells,” Electrochem. Commun. 4, 898–903 (2002).

    Article  Google Scholar 

  11. V. E. Guterman, T. A. Lastovina, S. V. Belenov, N. Y. Tabachkova, V. G. Vlasenko, et al., “PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas,” J. Solid State Electrochem. 18, 1307–1317 (2014).

    Article  Google Scholar 

  12. O. E. Gudko, T. A. Lastovina, N. V. Smirnova, and V. E. Guterman, “Binary Pt–Me/C nanocatalysts: structure and catalytic properties in the oxygen reduction reaction,” Nanotechnol. Russ. 4, 309 (2009).

    Article  Google Scholar 

  13. J. Wu and H. Yang, “Platinum-based oxygen reduction electrocatalysts,” Acc. Chem. Res. 46, 1848–1857 (2013).

    Article  Google Scholar 

  14. A. B. Yaroslavtsev, Yu. A. Dobrovolsky, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, and E. A. Sanginov, “Nanostructured materials for low-temperature fuel cells,” Russ. Chem. Rev. 81, 191 (2012).

    Article  Google Scholar 

  15. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A.Muller, F. J. DiSalvo, and D. A. Hector, “Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts,” Nat. Mater. 12, 81–87 (2013).

    Article  Google Scholar 

  16. S. Koh and P. Strasser, “Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity fo oxygen reduction by voltammetric surface dealloying,” J. Am. Chem. Soc. 129, 12624–12625 (2007).

    Article  Google Scholar 

  17. G. E. Ramirez-Caballero and P. B. Balbuena, “Surface segregation of core atoms in core-shell structures,” Chem. Phys. Lett. 456, 64–67 (2008).

    Article  Google Scholar 

  18. N. Jung, Y. Sohn, H. J. Park, K. S. Nahm, P. Kim, and S. J. Yoo, “High-performance PtCuxPt core–shell nanoparticles decorated with nanoporous pt surfaces for oxygen reduction reaction,” Appl. Catal. B: Environ. 196, 199–206 (2016).

    Article  Google Scholar 

  19. D. Wang, Y. Yu, H. L. Xin, and R. Hovden, P. Ercius, et al., “Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts,” Nano Lett. 12, 5230–5238 (2012).

    Article  Google Scholar 

  20. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, et al., “Design and synthesis of bimetallic electrocatalyst with multilayered pt-skin surfaces,” J. Am. Chem. Soc. 133, 14396–14403 (2011).

    Article  Google Scholar 

  21. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  22. L. Lutterotti and P. Scardi, “Simultaneous structure and size-strain refinement by the rietveld method,” J. Appl. Crystallogr. 23, 246–252 (1990).

    Article  Google Scholar 

  23. D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. le Bail, D. Louer, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stephens, and B. H. Toby, “Size-strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr. 37, 911–924 (2004).

    Article  Google Scholar 

  24. M. Leoni and P. Scardi, “Nanocrystalline domain size distributions from powder diffraction data,” J. Appl. Crystallogr. 37, 629–634 (2004).

    Article  Google Scholar 

  25. N. C. Popa and D. Balzar, “Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models,” J. Appl. Crystallogr. 41, 615–627 (2008).

    Article  Google Scholar 

  26. T. Hyde, “Final analysis: Crystallite size analysis of supported platinum catalysts by XRD,” Platinum Met. Rev. 52, 129–130 (2008).

    Article  Google Scholar 

  27. I. N. Leontyev, A. B. Kuriganova, N. G. Leontyev, L. Hennet, A. Rakhmatullin, N. V. Smirnova, and V. Dmitriev, “Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations,” RSC Adv. 4, 35959–35965 (2014).

    Article  Google Scholar 

  28. V. E. Guterman, S. V. Belenov, A. Yu. Pakharev, M. Min, N. Yu. Tabachkova, E. B. Mikheykina, L. L. Vysochina, and T. A. Lastovina, “Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles,” Int. J. Hydrogen Energy 41, 1609–1626 (2016).

    Article  Google Scholar 

  29. A. A. Alekseenko, V. E. Guterman, V. A. Volochaev, and S. V. Belenov, “Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts,” Inorg. Mater. 51, 1258 (2015).

    Article  Google Scholar 

  30. V. V. Pryadchenko, V. V. Srabionyan, A. A. Kurzin, N. V. Bulat, D. B. Shemet, L. A. Avakyan, S. V. Belenov, V. A. Volochaev, I. Zizak, V. E. Guterman, and L. A. Bugaev, “Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization,” Appl. Catal. A: Gen. 525, 226–236 (2016).

    Article  Google Scholar 

  31. V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, L. A. Avakyan, V. Y. Murzin, Y. V. Zubavichus, I. Zizak, V. E. Guterman, and L. A. Bugaev, “Atomic structure of bimetallic nanoparticles in PtAg/C catalysts: determination of components distribution in the range from disordered alloys to ‘core-shell’ structures,” J. Phys. Chem. C 119, 3217–3227 (2015).

    Article  Google Scholar 

  32. V. V. Srabionyan, V. V. Pryadchenko, A. A. Kurzin, S. V. Belenov, L. A. Avakyan, V. E. Guterman, and L. A. Bugaev, “Atomic structure of PtCu nanoparticles in PtCu/C catalysts from EXAFS spectroscopy data,” Phys. Solid State 58, 752 (2016).

    Article  Google Scholar 

  33. R. W. G. Wyckoff, “Cubic closest packed, CCP, structure,” in Crystal Structures, 2nd ed. (Interscience, New York, 1963), Vol. 1, pp. 7–83.

    Google Scholar 

  34. J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr. 11, 102–113 (1978).

    Article  Google Scholar 

  35. I. N. Leontyev, S. V. Belenov, V. E. Guterman, P. Haghi-Ashtiani, and A. P. Shaganov, “Catalytic activity of carbon-supported pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial,” J. Phys. Chem. C 115, 5429–5434 (2011).

    Article  Google Scholar 

  36. M. Oezaslan, F. Hasche, and P. Strasser, “Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes,” J. Phys. Chem. Lett. 4, 3273–3291 (2013).

    Article  Google Scholar 

  37. B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, and W. Palosz, “Application of the apparent lattice parameter to determination of the core-shell structure of nanocrystals,” Z. Kristall. 222, 580–594 (2007).

    Google Scholar 

  38. C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, and J. Zhang, “A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction,” J. Power Sources 173, 891–908 (2007).

    Article  Google Scholar 

  39. A. N. Valisi, T. Maiyalagan, L. Khotseng, V. Linkov, and S. Pasupathi, “Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys,” Electrocatal. 3, 108–118 (2012).

    Article  Google Scholar 

  40. L. Xiong and A. Manthiram, “Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs,” J. Electrochem. Soc. 152, A697–A703 (2005).

    Article  Google Scholar 

  41. D. V. Shtanskii, “Transmission high-resolution electron microscopy in nanotechnology studies,” Ros. Khim. Zh. 46 (5), 81–89 (2002).

    Google Scholar 

  42. V. G. Zhigalina, O. M. Zhigalina, N. A. Maiorova, O. A. Khazova, A. L. Chuvilin, and D. N. Khmelin, “Electron microscopy study of a Pt–Pd bimetallic structure formation on soot for catalytic systems,” Nanotechnol. Russ. 9, 485 (2014).

    Article  Google Scholar 

  43. X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25, 6313–6333 (2013).

    Article  Google Scholar 

  44. V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, L. A. Avakyan, J. A. van Bokhoven, and L. A. Bugaev, “EXAFS study of size dependence of atomic structure in palladium nanoparticles,” J. Phys. Chem. Solids 75, 470–476 (2014).

    Article  Google Scholar 

  45. D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, and D. E. Ramaker, “XAFS spectroscopy; fundamental principles and data analysis,” Top. Catal. 10, 143–155 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belenov.

Additional information

Original Russian Text © S.V. Belenov, V.A. Volochaev, V.V. Pryadchenko, V.V. Srabionyan, D.B. Shemet, N.Yu. Tabachkova, V.E. Guterman, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenov, S.V., Volochaev, V.A., Pryadchenko, V.V. et al. Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment. Nanotechnol Russia 12, 147–155 (2017). https://doi.org/10.1134/S1995078017020033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017020033

Navigation