Skip to main content
Log in

Biopolymer-Biochar matrix for long-term stabilization of arsenic in soil: Performance, mechanisms, and the effect of cationic heavy metals

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Powder biochar has been reported as an efficient stabilizer for heavy metal contaminated soils. However, infrequent studies addressed its long-term performance in real multi-metal polluted soil. This study aimed to investigate the long-term performance of iron oxide-loaded biochar (IOBC) in stabilization of arsenic and cationic heavy metals in a real multi-contaminated soil. Besides, to overcome the drawbacks of powder-type IOBC, the granular and suspension forms of IOBC were prepared using biopolymers as polymeric binder. The performance of prepared IOBCs was evaluated against red mud (RM) and pristine biochar, as references. Two single extraction tests (TCLP and SPLP) and a sequential extraction test were adopted to evaluate the stabilization efficiency for the soil samples containing 5 w/w % of the prepared IOBCs. It was observed that although stabilizers with high alkalinity (RM and BC) showed negligible or low immobilization of arsenic, the SPLP stabilization efficiency was ≥ 74.9% and the TCLP stabilization efficiency was ≥ 89.1% for arsenic. Furthermore, the biopolymer-biochar suppressed PM2.5 and PM10 concentration during mixing. The soil loss in artificial rainfall was more than 400 g/m2 lower in the soil sample containing IOBC-suspension compared to control sample. The results indicated the high potential of the prepared stabilizers, especially IOBC-suspension, for large-scale remediation of multi-contaminated soils.

Highlights

  • Stabilization efficiency was affected by the type of magnetic stabilizer.

  • Performance of IOBC-based stabilizers was superior to the commercial red mud.

  • Wetting properties of PVA significantly prevented dusting of powder stabilizer.

  • Positive synergetic effect of magnetic stabilizer and biopolymers was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ (2019) Low cost organic and inorganic sorbents to fight soil and water pollution. Environ Sci Pollut Res 26:11511–11513. https://doi.org/10.1007/s11356-019-04901-z

    Article  Google Scholar 

  2. Moradi H, Kim D-S, Kim S-H, Chang Y-Y, Yang J-K, Choi E-H, Kamranifard T (2022) Experimental and numerical study on diazinon removal using plasma bubble column reactor: modeling, kinetics, mechanisms, and degradation products. J Environ Chem Eng 10:108291. https://doi.org/10.1016/j.jece.2022.108291

    Article  Google Scholar 

  3. Xu Z, Mi W, Mi N, Fan X, Zhou Y, Tian Y (2020) Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ Sci Pollut Res 27:38835–38848. https://doi.org/10.1007/s11356-020-09877-9

    Article  Google Scholar 

  4. Zhao X, Sun Y, Huang J, Wang H, Tang D (2020) Effects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areas. Environ Sci Pollut Res 27:20215–20226. https://doi.org/10.1007/s11356-020-08538-1

    Article  Google Scholar 

  5. Vatanpour V, Jouyandeh M, Akhi H, Mousavi Khadem SS, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Esmaeili A, Rabiee N, Habibzadeh S, Koyuncu I, Nouranian S, Formela K, Saeb MR (2022) Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere 290:133363. https://doi.org/10.1016/j.chemosphere.2021.133363

    Article  Google Scholar 

  6. Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16:903–917. https://doi.org/10.1007/s10311-018-0734-7

    Article  Google Scholar 

  7. Yoon Y (2017) The impacts and implications of CERCLA on the Soil Environmental Conservation Act of the Republic of Korea. Transnational Environmental Law 6:11–29. https://doi.org/10.1017/S2047102515000266

    Article  Google Scholar 

  8. Pandey LK, Park J, Son DH, Kim W, Islam MS, Choi S, Lee H, Han T (2019) Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci Total Environ 651:323–333. https://doi.org/10.1016/j.scitotenv.2018.09.057

    Article  Google Scholar 

  9. Bradl H, Xenidis A (2005) Heavy metals in the environment: origin, interaction and remediation. In: Bradl HB (ed) Remediation techniques. Elsevier, pp 165–261. https://doi.org/10.1016/S1573-4285(05)80022-5

  10. Moradi H, Atashi P, Amelirad O, Yang J-K, Chang Y-Y, Kamranifard T (2022) Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method. Adv Nano Res 12:387–403. https://doi.org/10.12989/ANR.2022.12.4.387

  11. Souza LRR, Pomarolli LC, da Veiga MAMS (2020) From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. Environ Sci Pollut Res 27:10205–10227. https://doi.org/10.1007/s11356-020-08032-8

    Article  Google Scholar 

  12. Zhou F, Yang M, Lu R, Yan C (2022) Simultaneous adsorption-photocatalytic treatment with TiO2-Sep nanocomposites for in situ remediation of sodium pentachlorophenol contaminated aqueous and soil. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18924-6

    Article  Google Scholar 

  13. Furukawa Y, Mukai K, Ohmura K, Kobayashi T (2017) Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites. Environ Sci Pollut Res 24:6504–6511. https://doi.org/10.1007/s11356-016-8283-8

    Article  Google Scholar 

  14. Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55. https://doi.org/10.1016/j.envint.2017.05.001

    Article  Google Scholar 

  15. Tan Z, Wang Y, Zhang L, Huang Q (2017) Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environ Sci Pollut Res Int 24:24844–24855. https://doi.org/10.1007/s11356-017-0109-9

    Article  Google Scholar 

  16. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manage 28:215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  Google Scholar 

  17. Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) Reviews of environmental contamination and toxicology, vol 236. In: de Voogt P (ed) In-situ remediation approaches for the management of contaminated sites. Springer International Publishing, Cham, pp 1–115. https://doi.org/10.1007/978-3-319-20013-2_1

  18. Abdelrhman F, Gao J, Ali U, Wan N, Hu H (2022) Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17968-4

    Article  Google Scholar 

  19. Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483. https://doi.org/10.1007/s11356-013-1659-0

    Article  Google Scholar 

  20. Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B (2022) Biochar as a potential strategy for remediation of contaminated mining soils: mechanisms, applications, and future perspectives. J Environ Manage 313:114973. https://doi.org/10.1016/j.jenvman.2022.114973

    Article  Google Scholar 

  21. Baragaño D, Forján R, Fernández B, Ayala J, Afif E, Gallego JLR (2020) Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environ Sci Pollut Res 27:33681–33691. https://doi.org/10.1007/s11356-020-09586-3

    Article  Google Scholar 

  22. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Biores Technol 256:247–253. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  Google Scholar 

  23. Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, Ali S, Murtaza B, Naeem MA, Rizwan M (2020) Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: a batch and column scale study. Environ Pollut 261:114231. https://doi.org/10.1016/j.envpol.2020.114231

    Article  Google Scholar 

  24. Wang Y, Zhang Y, Zhao H, Hu W, Zhang H, Zhou X, Luo G (2022) The effectiveness of reed-biochar in mitigating phosphorus losses and enhancing microbially-driven phosphorus dynamics in paddy soil. J Environ Manage 314:115087. https://doi.org/10.1016/j.jenvman.2022.115087

    Article  Google Scholar 

  25. Osono A, Katoh M (2021) Characteristics of the immobilization process of arsenic depending on the size fraction released from excavated rock/sediment after the addition of immobilization materials. J Environ Manage 298:113534. https://doi.org/10.1016/j.jenvman.2021.113534

    Article  Google Scholar 

  26. Liu M, Almatrafi E, Zhang Y, Xu P, Song B, Zhou C, Zeng G, Zhu Y (2022) A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: applications and practical evaluations. Sci Total Environ 806:150531. https://doi.org/10.1016/j.scitotenv.2021.150531

    Article  Google Scholar 

  27. Liu F, Yang W, Li W, Zhao G-C (2021) Simultaneous oxidation and sequestration of arsenic(III) from aqueous solution by copper aluminate with peroxymonosulfate: a fast and efficient heterogeneous process. ACS Omega 6:1477–1487. https://doi.org/10.1021/acsomega.0c05203

    Article  Google Scholar 

  28. Dias YN, Pereira WVdS, Costa MVd, Souza ESd, Ramos SJ, Amarante CBd, Campos WEO, Fernandes AR (2022) Biochar mitigates bioavailability and environmental risks of arsenic in gold mining tailings from the eastern Amazon. J Environ Manage 311:114840. https://doi.org/10.1016/j.jenvman.2022.114840

    Article  Google Scholar 

  29. Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:7. https://doi.org/10.1016/j.jhazmat.2009.08.031

    Article  Google Scholar 

  30. Zhu S, Ho S-H, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F (2017) Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering 5:10. https://doi.org/10.1021/acssuschemeng.7b00542

    Article  Google Scholar 

  31. Wani I, Narde SR, Huang X, Remya N, Kushvaha V, Garg A (2021) Reviewing role of biochar in controlling soil erosion and considering future aspect of production using microwave pyrolysis process for the same. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02060-1

    Article  Google Scholar 

  32. Major J (2010) Guidelines on practical aspects of biochar application to field soil in various soil management systems. International Biochar Initiative. https://www.semanticscholar.org/paper/Guidelines-on-Practical-Aspects-of-Biochar-to-Field-Major/4ba87f84ad332d81db15ee132f3b8d4e51cc976d

  33. Zhou X, Zhang Z-f, Yang H, Bao C-j, Wang J-s, Sun Y-h, Liu D-w, Shen P-l, Su C (2021) Red mud-metakaolin based cementitious material for remediation of arsenic pollution: stabilization mechanism and leaching behavior of arsenic in lollingite. J Environ Manage 300:113715. https://doi.org/10.1016/j.jenvman.2021.113715

    Article  Google Scholar 

  34. Berta KM, Kurdi R, Lukács P, Penk M, Somogyi V (2021) Red mud with other waste materials as artificial soil substitute and its effect on Sinapis alba. J Environ Manage 287:112311. https://doi.org/10.1016/j.jenvman.2021.112311

    Article  Google Scholar 

  35. Yang T, Wang Y, Sheng L, He C, Sun W, He Q (2020) Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manage 255:109866. https://doi.org/10.1016/j.jenvman.2019.109866

    Article  Google Scholar 

  36. Yadav S, Yadav S (2014) Investigations of metal leaching from mobile phone parts using TCLP and WET methods. J Environ Manage 144:101–107. https://doi.org/10.1016/j.jenvman.2014.05.022

    Article  Google Scholar 

  37. Jin C, Li Z, Huang M, Ding X, Zhou M, Cai C, Chen J (2022) Cadmium immobilization in lake sediment using different crystallographic manganese oxides: performance and mechanism. J Environ Manage 313:114995. https://doi.org/10.1016/j.jenvman.2022.114995

    Article  Google Scholar 

  38. Barth E, McKernan J, Bless D, Dasu K (2021) Investigation of an immobilization process for PFAS contaminated soils. J Environ Manage 296:113069. https://doi.org/10.1016/j.jenvman.2021.113069

    Article  Google Scholar 

  39. Van Koetsem F, Van Havere L, Du Laing G (2016) Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. J Environ Manage 168:210–218. https://doi.org/10.1016/j.jenvman.2015.10.047

    Article  Google Scholar 

  40. Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323. https://doi.org/10.1016/S0003-2670(01)00924-2

    Article  Google Scholar 

  41. Wen J, Yi Y, Zeng G (2016) Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J Environ Manage 178:63–69. https://doi.org/10.1016/j.jenvman.2016.04.046

    Article  Google Scholar 

  42. Li X, Coles BJ, Ramsey MH, Thornton IJCG (1995) Sequential extraction of soils for multielement analysis by ICP-AES 124:15. https://doi.org/10.1016/0009-2541%2895%2900029-L

    Article  Google Scholar 

  43. Sut-Lohmann M, Ramezany S, Kästner F, Raab T, Heinrich M, Grimm M (2022) Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm. J Environ Manage 304:114229. https://doi.org/10.1016/j.jenvman.2021.114229

    Article  Google Scholar 

  44. Kim M-h, Kim J, Noh C-H, Choi S, Joo Y-S, Lee K-W (2020) Monitoring arsenic species content in seaweeds produced off the southern coast of Korea and its risk assessment. Environments 7:68. https://doi.org/10.3390/environments7090068

  45. Asgharnejad Lamraski MB, Naikoo GA, Zamani Pedram M, Sohani A, Hoseinzadeh S, Moradi H (2022) Thermodynamic modeling of several alcohol-hydrocarbon binary mixtures at low to moderate conditions. J Mol Liq 346:117924. https://doi.org/10.1016/j.molliq.2021.117924

    Article  Google Scholar 

  46. Meng L, Sun T, Li M, Saleem M, Zhang Q, Wang C (2019) Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol Environ Saf 171:75–83. https://doi.org/10.1016/j.ecoenv.2018.12.065

    Article  Google Scholar 

  47. Shi K-Y, Tao X-X, Hong F-F, He H, Ji Y-H, Ji-Lan L (2012) Mechanism of oxidation of low rank coal by nitric acid. J Coal Sci Eng 18:4. https://doi.org/10.1007/s12404-012-0411-6

  48. Sajjadi B, Zubatiuk T, Leszczynska D, Leszczynski J, Chen WY (2019) Chemical activation of biochar for energy and environmental applications: a comprehensive review. J Rev Chem Eng 35:19. https://doi.org/10.1515/revce-2018-0003

  49. Mandal R, Chakraborty S, Chakraborty P, Chakraborty S (2019) Development of the electrolyzed water based set accelerated greener cement paste. Mater Lett 243:46–49. https://doi.org/10.1016/j.matlet.2019.02.017

    Article  Google Scholar 

  50. Martiñá-Prieto D, Cancelo-González J, Barral MT (2018) Arsenic mobility in As-containing soils from geogenic origin: fractionation and leachability. J Chem 2018:7328203. https://doi.org/10.1155/2018/7328203

    Article  Google Scholar 

  51. Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:8. https://doi.org/10.1016/j.envpol.2006.01.010

    Article  Google Scholar 

  52. Khan ZH, Gao M, Qiu W, Qaswar M, Islam MS, Song Z (2020) The sorbed mechanisms of engineering magnetic biochar composites on arsenic in aqueous solution. Environ Sci Pollut Res 27:41361–41371. https://doi.org/10.1007/s11356-020-10082-x

    Article  Google Scholar 

  53. Zouboulis AI, Kydros KA, Matis KA (1993) Arsenic(III) and arsenic(V) removal from solutions by pyrite fines. Sep Sci Technol 28:15. https://doi.org/10.1080/01496399308019748

    Article  Google Scholar 

  54. Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water-problems and solutions. Water Sci Technol 40:8. https://doi.org/10.2166/wst.1999.0088

    Article  Google Scholar 

  55. Polowczyk I, Cyganowski P, Ulatowska J, Sawiński W, Bastrzyk A (2018) Synthetic iron oxides for adsorptive removal of arsenic. Water Air Soil Pollut 229:203. https://doi.org/10.1007/s11270-018-3866-2

    Article  Google Scholar 

  56. Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR (2022) Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Sci Total Environ 810:152228. https://doi.org/10.1016/j.scitotenv.2021.152228

    Article  Google Scholar 

  57. Sanna Angotzi M, Mameli V, Fantasia A, Cara C, Secci F, Enzo S, Gerina M, Cannas C (2022) As(III, V) Uptake from nanostructured iron oxides and oxyhydroxides: the complex interplay between sorbent surface chemistry and arsenic equilibria. 12: 326. https://doi.org/10.3390/nano12030326.

  58. Lingamdinne LP, Choi J-S, Choi Y-L, Chang Y-Y, Yang J-K, Karri RR, Koduru JR (2020) Process modeling and optimization of an iron oxide immobilized graphene oxide gadolinium nanocomposite for arsenic adsorption. J Mol Liq 299:112261. https://doi.org/10.1016/j.molliq.2019.112261

    Article  Google Scholar 

  59. Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122. https://doi.org/10.1016/j.envpol.2012.12.025

    Article  Google Scholar 

  60. Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039900

  61. Shen Z, Jin J, Fu J, Yang M, Li F (2021) Anchoring Al- and/or Mg-oxides to magnetic biochars for Co-uptake of arsenate and fluoride from water. J Environ Manage 293:112898. https://doi.org/10.1016/j.jenvman.2021.112898

    Article  Google Scholar 

  62. Qi F, Kuppusamy S, Naidu R, Bolan NS, Ok YS, Lamb D, Li Y, Yu L, Semple KT, Wang H (2017) Pyrogenic carbon and its role in contaminant immobilization in soils. Crit Rev Environ Sci Technol 47:795–876. https://doi.org/10.1080/10643389.2017.1328918

    Article  Google Scholar 

  63. Wang S, Xu Y, Norbu N, Wang Z (2018) Remediation of biochar on heavy metal polluted soils. IOP Conf Earth Environ Sci 108:042113. https://doi.org/10.1088/1755-1315/108/4/042113

  64. He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855. https://doi.org/10.1016/j.envpol.2019.05.151

  65. Fan J, Chen X, Xu Z, Xu X, Zhao L, Qiu H, Cao X (2020) One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation. J Hazard Mater 398:122901. https://doi.org/10.1016/j.jhazmat.2020.122901

    Article  Google Scholar 

  66. Asere TG, Mincke S, De Clercq J, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Removal of arsenic (V) from aqueous solutions using chitosan–red scoria and chitosan–pumice blends. Int J Environ Res Public Health 14:895. https://doi.org/10.3390/ijerph14080895

  67. Taneez M, Hurel C (2019) A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ Sci Pollut Res 26:22106–22125. https://doi.org/10.1007/s11356-019-05576-2

    Article  Google Scholar 

  68. Bai X, Lin J, Zhang Z, Zhan Y (2022) Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19506-2

    Article  Google Scholar 

  69. Liu M, Sun F, Lv Y, Xu Y, Li M, Wang Y, Yin X, Jiang H (2021) Remediation of arsenic-contaminated soil by nano-zirconia modified biochar. Environ Sci Pollut Res 28:68792–68803. https://doi.org/10.1007/s11356-021-15362-8

    Article  Google Scholar 

  70. Qiao J-t, Liu T-x, Wang X-q, Li F-b, Lv Y-h, Cui J-h, Zeng X-d, Yuan Y-z, Liu C-p (2018) Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 195:11. https://doi.org/10.1016/j.chemosphere.2017.12.081

    Article  Google Scholar 

  71. Jellali S, El-Bassi L, Charabi Y, Usman M, Khiari B, Al-Wardy M, Jeguirim M (2022) Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: a critical review on benefits for environment and agriculture. J Environ Manage 305:114368. https://doi.org/10.1016/j.jenvman.2021.114368

    Article  Google Scholar 

  72. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr Build Mater 29:167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049

    Article  Google Scholar 

  73. Moon DH, Park J-W, Chang Y-Y, Ok YS, Lee SS, Ahmad M, Koutsospyros A, Park J-H, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res 20:8464–8471. https://doi.org/10.1007/s11356-013-1964-7

    Article  Google Scholar 

  74. Borhan A, Abdullah NA, Rashidi NA, Taha MF (2016) Removal of Cu2+ and Zn2+ from single metal aqueous solution using rubber-seed shell based activated carbon. Procedia Engineering 148:694–701. https://doi.org/10.1016/j.proeng.2016.06.571

    Article  Google Scholar 

  75. Nesbitt HW, Canning GW, Bancroft GM (1998) XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim Cosmochim Acta 62:2097–2110. https://doi.org/10.1016/S0016-7037(98)00146-X

    Article  Google Scholar 

  76. Fullston D, Fornasiero D, Ralston J (1999) Oxidation of synthetic and natural samples of enargite and tennantite: 2. X-ray photoelectron spectroscopic study Langmuir 15:4530–4536. https://doi.org/10.1021/la981525w

    Article  Google Scholar 

  77. Han X, Li Y-L, Gu J-D (2011) Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions. Geochim Cosmochim Acta 75:368–379. https://doi.org/10.1016/j.gca.2010.10.010

    Article  Google Scholar 

  78. Ajith N, Bhattacharyya K, Ipte PR, Satpati AK, Tripathi AK, Verma R, Swain KK (2019) Interaction of arsenic(III) and arsenic(V) on manganese dioxide: XPS and electrochemical investigations. Journal of Environmental Science and Health, Part A 54:277–285. https://doi.org/10.1080/10934529.2018.1544478

    Article  Google Scholar 

  79. Kang YL, Poon MY, Monash P, Ibrahim S, Saravanan P (2013) Surface chemistry and adsorption mechanism of cadmium ion on activated carbon derived from Garcinia mangostana shell. Korean J Chem Eng 30:1904–1910. https://doi.org/10.1007/s11814-013-0130-8

    Article  Google Scholar 

  80. Tan X, Liu Y, Gu Y, Zeng G, Wang X, Hu X, Sun Z, Yang Z (2015) Immobilization of Cd(II) in acid soil amended with different biochars with a long term of incubation. Environ Sci Pollut Res 22:12597–12604. https://doi.org/10.1007/s11356-015-4523-6

    Article  Google Scholar 

  81. Yang T, He R, Nie G, Wang W, Zhang G, Hu Y, Wu L (2018) Creation of hollow calcite single crystals with CQDs: synthesis, characterization, and fast and efficient decontamination of Cd(II). Sci Rep 8:17603. https://doi.org/10.1038/s41598-018-36044-5

    Article  Google Scholar 

  82. Choi J-S, Kim D-S, Choi Y-L, Lingamdinne LP, Koduru JR, Yang J-K, Chang Y-Y (2019) Suppression of soil dust emissions from large-scale construction sites using starch and polyvinyl alcohol. Int J Chemoinformatics Chem Eng 8:38–46. https://doi.org/10.4018/IJCCE.2019070104

  83. Li M, Du H, Zhou L, Chai S, Wang M (2021) Analysis on the applicability of modified polyvinyl alcohol (MPA) for temporary controlling the dust from soil in construction site. J Air Waste Manag Assoc 71:422–432. https://doi.org/10.1080/10962247.2020.1844341

    Article  Google Scholar 

Download references

Funding

This work was supported by Universities-Industries Collabo R&D project of Ministry of SMEs and Startups (S2910834). It was also partially supported by Kwangwoon University, Seoul, Korea, through research grant – 2022.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Dong-Su Kim. The first draft of the manuscript was written by Dong-Su Kim and Hiresh Moradi, and all authors commented on previous versions of the manuscript. Yoon-Young Chang and Jae-Kyu Yang provided guidance on the preparation method of the different types of IOBC stabilizers. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yoon-Young Chang or Jae-Kyu Yang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1881 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DS., Moradi, H., Chang, YY. et al. Biopolymer-Biochar matrix for long-term stabilization of arsenic in soil: Performance, mechanisms, and the effect of cationic heavy metals. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03531-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03531-9

Keywords

Navigation