Skip to main content
Log in

Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this work was to determine the effect of dosage on the immobilization of lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), and zinc (Zn) in sediment by red mud (RM). To achieve this aim, the adsorption characteristics and mechanism of Pb, Cu, Cd, Ni, and Zn from aqueous solution on RM were studied at first, and then the influence of the RM dosage on the fractionation and leaching potential of Pb, Cu, Cd, Ni, and Zn in sediment was investigated. The results showed that RM possessed high adsorption capacities for Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) in aqueous solution. The maximum monolayer Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) adsorption capacities for RM derived from the Langmuir isotherm model were found to be 296, 39.2, 70.2, 46.0, and 50.7 mg/g, respectively. The addition of RM into sediment could effectively reduce the toxicity characteristic leaching procedure (TCLP)-leachable concentrations of Pb, Cu, Cd, Ni, and Zn in the sediment. The added RM could effectively immobilize the mobile (exchangeable, reducible, and oxidizable fractions) Pb in sediment by the conversion of the exchangeable and reducible fractions into the residual fraction, and it could effectively immobilize the mobile Cu, Cd, Ni, and Zn in sediment by the conversion of the exchangeable fraction into the residual fraction. The quantities of mobile Pb, Cu, Cd, and Ni immobilized by RM had a good linear relationship with the added RM. The above results suggest that RM is a promising amendment for the immobilization of mobile Pb, Cu, Cd, Ni, and Zn in sediment, and the linear relationship between the RM dosage and the quantities of immobilized Pb, Cu, Cd, and Ni by RM can be employed to determine the RM dosage required for the immobilization of mobile Pb, Cu, Cd, and Ni in sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Álvarez-Ayuso E, Garcı́a-Sánchez A, Querol X (2003): Purification of metal electroplating waste waters using zeolites. Water Res. 37, 4855-4862

  • Bosso ST, Enzweiler J (2002) Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Res 36:4795–4800

    Article  CAS  Google Scholar 

  • Cai C, Zhao M, Yu Z, Rong H, Zhang C (2019) Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci Total Environ 662:205–217

    Article  CAS  Google Scholar 

  • Chen H, Yang X, Liu Y, Lin X, Wang J, Zhang Z, Li N, Li Y, Zhang Y (2021a) KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manage 130:82–92

    Article  CAS  Google Scholar 

  • Chen M, Ding S, Gao S, Fu Z, Tang W, Wu Y, Gong M, Wang D, Wang Y (2019) Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. Sci Total Environ 665:181–190

    Article  CAS  Google Scholar 

  • Chen Q, Ke Y, Zhang L, Tyrer M, Hills CD, Xue G (2009) Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment. J Hazard Mater 166:421–427

    Article  CAS  Google Scholar 

  • Chen X, Ma R, Luo J, Huang W, Fang L, Sun S, Lin J (2021) Co-microwave pyrolysis of electroplating sludge and municipal sewage sludge to synergistically improve the immobilization of high-concentration heavy metals and an analysis of the mechanism. J. Hazard. Mater. 417:126099

    Article  CAS  Google Scholar 

  • da Conceição FT, da Silva MSG, Menegário AA, Antunes MLP, Navarro GRB, Fernandes AM, Dorea C, Moruzzi RB (2021) Precipitation as the main mechanism for Cd(II), Pb(II) and Zn(II) removal from aqueous solutions using natural and activated forms of red mud. Environ Adv 4:100056

    Article  CAS  Google Scholar 

  • De Gisi S, Todaro F, Mesto E, Schingaro E, Notarnicola M (2020) Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and activated carbon. J Clean Prod 269:122416

    Article  CAS  Google Scholar 

  • Deng R, Huang D, Xue W, Lei L, Chen S, Zhou C, Liu X, Wen X, Li B (2020) Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite. Chem Eng J 397:125396

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  Google Scholar 

  • Guimarães T, Paquini LD, LyrioFerraz BR, Roberto Profeti LP, Profeti D (2020) Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder. J. Environ Chem Eng 8:103972

    Article  CAS  Google Scholar 

  • Hua Y, Heal KV, Friesl-Hanl W (2017) The use of red mud as an immobiliser for metal/metalloid-contaminated soil: a review. J Hazard Mater 325:17–30

    Article  CAS  Google Scholar 

  • Ijagbemi CO, Baek M-H, Kim D-S (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166:538–546

    Article  CAS  Google Scholar 

  • Joseph IV, Tosheva L, Doyle AM (2020) Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. J Environ Chem Eng 8:103895

    Article  CAS  Google Scholar 

  • Kaewprachum W, Wongsakulphasatch S, Kiatkittipong W, Striolo A, Cheng CK, Assabumrungrat S (2020) SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems. J Environ Chem Eng 8:102920

    Article  CAS  Google Scholar 

  • Kong M, Zhu Y, Han T, Zhang S, Li J, Xu X, Chao J, Zhang Y, Gao Y (2021) Interactions of heavy metal elements across sediment-water interface in Lake Jiaogang. Environ Pollut 286:117578

    Article  CAS  Google Scholar 

  • Lee S-H, Kim EY, Park H, Yun J, Kim J-G (2011a) In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1–7

    Article  CAS  Google Scholar 

  • Lee S, An J, Kim Y-J, Nam K (2011b) Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments. J Hazard Mater 186:2117–2122

    Article  CAS  Google Scholar 

  • Li J, Liu K, Yan S, Li Y, Han D (2016a) Application of thermal plasma technology for the treatment of solid wastes in China: An overview. Waste Manage 58:260–269

    Article  CAS  Google Scholar 

  • Li X, Wu Y, Zhang C, Liu Y, Zeng G, Tang X, Dai L, Lan S (2016b) Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron. Chem Eng J 306:393–400

    Article  CAS  Google Scholar 

  • Li XC, Yang ZZ, Zhang C, Wei JJ, Zhang HQ, Li ZH, Ma C, Wang MS, Chen JQ, Hu JW (2019) Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chem Eng J 373:307–317

    Article  CAS  Google Scholar 

  • Li Y, Huang H, Xu Z, Ma H, Guo Y (2020) Mechanism study on manganese(II) removal from acid mine wastewater using red mud and its application to a lab-scale column. J Clean Prod 253:119955

    Article  CAS  Google Scholar 

  • Li Y, Yu H, Liu L, Yu H (2021) Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J Hazard Mater 420:126655

    Article  CAS  Google Scholar 

  • Lin J-Y, Kim M, Li D, Kim H, Huang C-P (2020) The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization. Chemosphere 247:125867

    Article  CAS  Google Scholar 

  • Lin J, Zhao Y, Zhang Z, Zhan Y, Zhang Z, Wang Y, Yu Y, Wu X (2019) Immobilization of mobile and bioavailable phosphorus in sediments using lanthanum hydroxide and magnetite/lanthanum hydroxide composite as amendments. Sci Total Environ 687:232–243

    Article  CAS  Google Scholar 

  • Liu D, Tang Y, Li J, Hao Z, Zhu J, Wei J, Liu C, Dong L, Jia B, Chen G (2021) Eupatorium adenophorum derived adsorbent by hydrothermal-assisted HNO3 modification and application to Pb2+ adsorption. J Environ Chem Eng 9:105972

    Article  CAS  Google Scholar 

  • Liu Q, Sheng Y, Wang W, Liu X (2021) Efficacy and microbial responses of biochar-nanoscale zero-valent during in-situ remediation of Cd-contaminated sediment. J Clean Prod 287:125076

    Article  CAS  Google Scholar 

  • Luo L, Ma C, Ma Y, Zhang S, Lv J, Cui M (2011) New insights into the sorption mechanism of cadmium on red mud. Environ Pollut 159:1108–1113

    Article  CAS  Google Scholar 

  • Luu T-T, Dinh V-P, Nguyen Q-H, Tran N-Q, Nguyen D-K, Ho T-H, Nguyen V-D, Tran DX, Kiet HAT (2022) Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan. Chemosphere 287:132279

    Article  CAS  Google Scholar 

  • Lyu F, Niu S, Wang L, Liu R, Sun W, He D (2021) Efficient removal of Pb(II) ions from aqueous solution by modified red mud. J Hazard Mater 406:124678

    Article  CAS  Google Scholar 

  • Ma T, Sheng Y, Meng Y, Sun J (2019) Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size. Chemosphere 225:83–92

    Article  CAS  Google Scholar 

  • Ma X, Ren Q, Zhan W, Hu C, Zhao M, Tian Y, Liao Q, Yang Z, Wang Y (2020) Effectively reducing the bioavailability and leachability of heavy metals in sediment and improving sediment properties with a low-cost composite. Environ Sci Pollut Res 27:45581–45590

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Geret F, Roméo M, Marmier N (2013) Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment. J Hazard Mater 252–253:213–219

    Article  CAS  Google Scholar 

  • Miranda LS, Wijesiri B, Ayoko GA, Egodawatta P, Goonetilleke A (2021) Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 202:117386

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  Google Scholar 

  • Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95

    Article  CAS  Google Scholar 

  • Norén A, Karlfeldt Fedje K, Strömvall A-M, Rauch S, Andersson-Sköld Y (2020) Integrated assessment of management strategies for metal-contaminated dredged sediments – what are the best approaches for ports, marinas and waterways? Sci. Total Environ. 716:135510

    Article  CAS  Google Scholar 

  • Pal D, Maiti SK (2020) An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. Ecotoxicol Environ Saf 187:109833

    Article  CAS  Google Scholar 

  • Pan J, Gao B, Wang S, Guo K, Xu X, Yue Q (2020) Waste-to-resources: green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci Total Environ 737:140283

    Article  CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Peng W, Li X, Xiao S, Fan W (2018) Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments 18:1701–1719

    Article  CAS  Google Scholar 

  • Pichinelli BC, da Silva MSG, da Conceição FT, Menegário AA, Antunes MLP, Navarro GRB, Moruzzi RB (2016) Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-neutralised red mud. Water Air Soil Pollut 228:24

    Article  CAS  Google Scholar 

  • Pietrelli L, Ippolito NM, Ferro S, Dovì VG, Vocciante M (2019) Removal of Mn and As from drinking water by red mud and pyrolusite. J Environ Manage 237:526–533

    Article  CAS  Google Scholar 

  • Prabhakar R, Samadder SR (2020) Effective immobilization and reduction in bioavailability of Cd in a L. succinea growing in contaminated sediment by the application of alkali synthesized fly ash based zeolite (FABZ). Micropor Mesopor Mat 306:110416

    Article  CAS  Google Scholar 

  • Rađenović D, Kerkez Đ, Pilipović DT, Dubovina M, Grba N, Krčmar D, Dalmacija B (2019) Long-term application of stabilization/solidification technique on highly contaminated sediments with environment risk assessment. Sci Total Environ 684:186–195

    Article  CAS  Google Scholar 

  • Rao K, Tang T, Zhang X, Wang M, Liu J, Wu B, Wang P, Ma Y (2021) Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 282:131041

    Article  CAS  Google Scholar 

  • Santona L, Castaldi P, Melis P (2006) Evaluation of the interaction mechanisms between red muds and heavy metals. J Hazard Mater 136:324–329

    Article  CAS  Google Scholar 

  • Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 264:128455

    Article  CAS  Google Scholar 

  • Shin W, Kim YK (2016) Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite. J Soils Sediments 16:726–735

    Article  CAS  Google Scholar 

  • Slijepčević N, Pilipović DT, Kerkez Đ, Krčmar D, Bečelić-Tomin M, Beljin J, Dalmacija B (2021) A cost effective method for immobilization of Cu and Ni polluted river sediment with nZVI synthesized from leaf extract. Chemosphere 263:127816

    Article  CAS  Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interf Sci 304:21–28

    Article  CAS  Google Scholar 

  • Taneez M, Marmier N, Hurel C (2016) Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France. Chemosphere 150:116–122

    Article  CAS  Google Scholar 

  • Taneez M, Hurel C (2019) A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ Sci Pollut Res 26:22106–22125

    Article  CAS  Google Scholar 

  • Todaro F, De Gisi S, Notarnicola M (2020) Contaminated marine sediment stabilization/solidification treatment with cement/lime: leaching behaviour investigation. Environ Sci Pollut Res 27:21407–21415

    Article  CAS  Google Scholar 

  • Tohdee K, Kaewsichan L, Asadullah, (2018) Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. J Environ Chem Eng 6:2821–2828

    Article  CAS  Google Scholar 

  • Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  Google Scholar 

  • Wan J, Zhang C, Zeng G, Huang D, Hu L, Huang C, Wu H, Wang L (2016) Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. J Hazard Mater 320:278–288

    Article  CAS  Google Scholar 

  • Wang F, Pan H, Xu J (2020) Evaluation of red mud based binder for the immobilization of copper, lead and zinc. Environ Pollut 263:114416

    Article  CAS  Google Scholar 

  • Wang F, Xu J, Yin H, Zhang Y, Pan H, Wang L (2021) Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders. Environ Pollut 284:117178

    Article  CAS  Google Scholar 

  • Wang M, Zhu Y, Cheng L, Andserson B, Zhao X, Wang D, Ding A (2018) Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci 63:156–173

    Article  CAS  Google Scholar 

  • Xia P, Ma L, Sun R, Yang Y, Tang X, Yan D, Lin T, Zhang Y, Yi Y (2020) Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland. China Sci Total Environ 740:140231

    Article  CAS  Google Scholar 

  • Xu Z, Lu Z, Zhang L, Fan H, Wang Y, Li J, Lin Y, Liu H, Guo S, Xu M, Wang J (2021) Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution. Environ Pollut 275:116543

    Article  CAS  Google Scholar 

  • Xue W, Huang D, Zeng G, Wan J, Zhang C, Xu R, Cheng M, Deng R (2018) Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J Hazard Mater 341:381–389

    Article  CAS  Google Scholar 

  • Yan L, Li S, Yu H, Shan R, Du B, Liu T (2016) Facile solvothermal synthesis of Fe3O4/bentonite for efficient removal of heavy metals from aqueous solution. Powder Technol 301:632–640

    Article  CAS  Google Scholar 

  • Yang L, Ren Q, Zheng KX, Jiao ZQ, Ruan XL, Wang YY (2022) Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci Total Environ 806:150646

    Article  CAS  Google Scholar 

  • Yang T, Wang Y, Sheng L, He C, Sun W, He Q (2020) Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J. Environ. Manage. 255:109866

    Article  CAS  Google Scholar 

  • Yuan Y, An Z, Zhang R, Wei X, Lai B (2021) Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J Clean Prod 293:126215

    Article  CAS  Google Scholar 

  • Zang F, Wang S, Nan Z, Zhao C, Sun H, Huang W, Bao L (2019) Leachability of heavy metals in loess-amended dredged sediment from Northwest of China. Ecotoxicol Environ Saf 183:109561

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Y, Zhang H, Li Y, Zhang Z, Zhang W (2020) Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: adsorption kinetics, isotherms, and regeneration assessment. Resour Conserv Recycl. 156:104688

    Article  Google Scholar 

  • Zhang Y, Labianca C, Chen L, De Gisi S, Notarnicola M, Guo B, Sun J, Ding S, Wang L (2021) Sustainable ex-situ remediation of contaminated sediment: a review. Environ Pollut. 287:117333

    Article  CAS  Google Scholar 

  • Zhou H, Zhang W, Li L, Zhang M, Wang D (2021) Environmental impact and optimization of lake dredged-sludge treatment and disposal technologies based on life cycle assessment (LCA) analysis. Sci. Total Environ. 787:147703

    Article  CAS  Google Scholar 

Download references

Funding

This work was jointly supported by the Key Research and Development Project of Shandong (No. 2020CXGC011404), Shandong Key Scientific and Technical Innovation Project (Grant No. 2018YFJH0902), National Science Foundation of China (Grant No. 52070122 and 51408354), and Shanghai Natural Science Foundation (Grant No. 15ZR1420700).

Author information

Authors and Affiliations

Authors

Contributions

Xianshang Bai: data curation, writing – original draft, investigation, software; Jianwei Lin: formal analysis, methodology, writing –original draft, conceptualization, funding acquisition, writing – review and editing; Zhibin Zhang: writing – review and editing, funding acquisition, methodology; Yanhui Zhan: software, validation, project administration, resources.

Corresponding authors

Correspondence to Jianwei Lin or Zhibin Zhang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Lin, J., Zhang, Z. et al. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. Environ Sci Pollut Res 29, 51793–51814 (2022). https://doi.org/10.1007/s11356-022-19506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19506-2

Keywords

Navigation