Skip to main content
Log in

Adsorption of Bovine Serum Albumin on Magnetic Material Montmorillonite: Isotherms, Kinetic, Thermodynamic, and Mechanism Studies

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The adsorption of a model protein such as bovine serum albumin (BSA) on a magnetic material based on montmorillonite (MtMag) was studied. Kinetic data, equilibrium isotherms, and thermodynamic calculations were performed and analyzed to obtain information about the rate-limiting step of the adsorption process and propose a possible adsorption mechanism. Equilibrium studies showed optimal adsorption around pH 4.5, the maximum adsorption capacity being around 231.9 mg g-1 at 25 °C. The latter behavior may be ascribed to the most packed protein conformation at pH conditions near the BSA isoelectric point. In addition, the BSA adsorption capacity decreased with the ionic strength (10–3−10–1 M) and increased with the temperature (15–30 °C). In all cases, the Sips model yielded the best fit to the experimental results. The thermodynamic analysis revealed an isosteric heat dependence on the coverage, which allowed ruling out the Langmuir model. The kinetic data were adequately fitted by the IPD model, which suggests that the rate-limiting step of the adsorption process is the diffusion of BSA molecules into the internal sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cacciotti, I.; Lombardelli, C.; Benucci, I.; Esti, M.: Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J. Mat. Res. Technol. 8, 3644–3652 (2019). https://doi.org/10.1016/j.jmrt.2019.06.002

    Article  CAS  Google Scholar 

  2. Çalımlı, M.H.; Demirbaş, Ö.; Aygün, A.; Alma, M.H.; Nas, M.S.; Şen, F.: Immobilization kinetics and mechanism of bovine serum albumin on diatomite clay from aqueous solutions. Appl Water Sci 8, 209 (2018). https://doi.org/10.1007/s13201-018-0858-8

    Article  CAS  ADS  Google Scholar 

  3. Schmid, M.; Merzbacher, S.; Brzoska, N.; Müller, K.; Jesdinszki, M.: Improvement of food packaging-related properties of whey protein isolate-based nanocomposite films and coatings by addition of montmorillonite nanoplatelets. Front. Mater. (2017). https://doi.org/10.3389/fmats.2017.00035

    Article  Google Scholar 

  4. Staunton, S.; Quiquampoix, H.: Adsorption and conformation of bovine serum albumin on montmorillonite: modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. J. Colloid Interface Sci. 166, 89–94 (1994). https://doi.org/10.1006/jcis.1994.1274

    Article  CAS  ADS  Google Scholar 

  5. Servagent-Noinville, S.; Revault, M.; Quiquampoix, H.; Baron, M.-H.: Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J. Colloid Interface Sci. 221, 273–283 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Tran, A.T.T.; James, B.J.: A study the interaction forces between the bovine serum albumin protein and montmorillonite surface. Colloids Surf. A 414, 104–114 (2012). https://doi.org/10.1016/j.colsurfa.2012.08.066

    Article  CAS  Google Scholar 

  7. Kim, Oh.: Physico-chemical interaction between clay minerals and albumin protein according to the type of clay. Minerals. 9, 396 (2019). https://doi.org/10.3390/min9070396

    Article  CAS  ADS  Google Scholar 

  8. Gamba, M.; Kovář, P.; Pospíšil, M.; Torres Sánchez, R.M.: Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Appl. Clay Sci. 137, 59–68 (2017). https://doi.org/10.1016/j.clay.2016.12.001

    Article  CAS  Google Scholar 

  9. Flores, F.M.; Undabeytia, T.; Morillo, E.; Torres Sánchez, R.M.: Technological applications of organo-montmorillonites in the removal of pyrimethanil from water: adsorption/desorption and flocculation studies. Environ. Sci. Pollut. Res.Pollut. Res. 24, 14463–14476 (2017). https://doi.org/10.1007/s11356-017-9016-3

    Article  CAS  Google Scholar 

  10. Alkan, M.; Demirbaş, Ö.; Doğan, M.; Arslan, O.: Surface properties of bovine serum albumin – adsorbed oxides: adsorption, adsorption kinetics and electrokinetic properties. Microp. Mesop. Mater. 96, 331–340 (2006). https://doi.org/10.1016/j.micromeso.2006.07.007

    Article  CAS  Google Scholar 

  11. Rahdar, S.; Rahdar, A.; Ahmadi, S.; Trant, J.F.: Adsorption of bovine serum albumin (BSA) by bare magnetite nanoparticles with surface oxidative impurities that prevent aggregation. Can. J. Chem. 97, 577–583 (2019). https://doi.org/10.1139/cjc-2019-0008

    Article  CAS  Google Scholar 

  12. Shah, M.T.; Alveroglu, E.: Synthesis and characterization of magnetite nanoparticles having different cover layer and investigation of cover layer effect on the adsorption of lysozyme and bovine serum albumin. Mater. Sci. Eng. C 81, 393–399 (2017). https://doi.org/10.1016/j.msec.2017.08.033

    Article  CAS  Google Scholar 

  13. Barraqué, F.; Montes, M.L.; Fernández, M.A.; Mercader, R.C.; Candal, R.J.; Torres Sánchez, R.M.: Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: surface sites involved on cobalt sorption. J. Magn. Magn. Mater.Magn. Magn. Mater. 466, 376–384 (2018)

    Article  ADS  Google Scholar 

  14. Barraqué, F.; Montes, L.; Fernandez, M.; Candal, R.; Mercader, R.; Torres Sanchez, R.: Synthesis of high-saturation magnetization composites by montmorillonite loading with hexadecyl trimethyl ammonium ions and magnetite nucleation for improved effluent sludge handling and dye removal. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03834-6

    Article  Google Scholar 

  15. Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P.: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265, 159–168 (2011). https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  16. Gamba, M.; Flores, F.M.; Madejová, J.; Torres Sánchez, R.M.: Comparison of imazalil removal onto montmorillonite and nanomontmorillonite and adsorption surface sites involved: an approach for agricultural wastewater treatment. Ind. Eng. Chem. Res. 54, 1529–1538 (2015). https://doi.org/10.1021/ie5035804

    Article  CAS  Google Scholar 

  17. Yarza, F.; Morantes, C.F.; Montes, M.L.; Bellotti, N.; Salduondo, J.; Yapar, S.; Cravero, F.; Torres Sánchez, R.M.: Quantification of the distribution of cetylpyridinium chloride on the external and internal surfaces of montmorillonite: Relevance in antifungal activity assessment. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123390

    Article  Google Scholar 

  18. Regazzoni, A.E.: Formación de Magnetita (Fe3O4) en Medios Acuosos y Propiedades de la Interfaz Magnetita / Solución, Dirección de Investigación y desarrollo, (1984)

  19. Schwertmann, U.; Cornell, R.M.: Iron Oxides in the Laboratory: Preparation and Characterization, John Wiley & Sons (2008)

  20. Reed, R.G.; Putnam, F.W.; Peters, T.: Sequence of residues 400–403 of bovine serum albumin. Biochem. J. 191, 867–868 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, J.; Li, S.; Liu, B.: Adsorption of BSA onto sulfonated microspheres. Biochem. Eng. J. 23, 259–263 (2005). https://doi.org/10.1016/j.bej.2005.01.018

    Article  CAS  Google Scholar 

  22. Tsai, T.; Hsu, C.; Chao, V.W.; Huang, S.; Chan, C.; Wu, T.; Wang, P.: Selective desorption of intercalated bovine serum albumin and lysozyme by organically modified montmorillonite. J. Chin. Chem. Soc. 62, 562–568 (2015)

    Article  CAS  Google Scholar 

  23. Wang, T.; Yue, Y.; Yuan, R.; Cai, C.; Niu, C.; Guo, C.: Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles. Int. J. Biol. Macromol. 58, 57–65 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Wu, V.W.-K.C.; Hsu, C.-C.; Lu, W.-M.; Chen, W.-J.; Naveen, B.; Tsai, T.-Y.: Protein-concentration-dependent adsorption behaviour of inorganic layered materials. RSC Adv. 5, 10936–10943 (2015)

    Article  Google Scholar 

  25. Umrethia, M.; Kett, V.L.; Andrews, G.P.; Malcolm, R.K.; Woolfson, A.D.: Selection of an analytical method for evaluating bovine serum albumin concentrations in pharmaceutical polymeric formulations. J. Pharm. Biomed. Anal. 51, 1175–1179 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Adamson, A.W., Gast, A.P.: Physical chemistry of surfaces, Interscience publishers New York (1967)

  27. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  28. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry, revised and expanded, CRC press (2016)

  29. Barreca, S.; Orecchio, S.; Pace, A.: The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl. Clay Sci. 99, 220–228 (2014). https://doi.org/10.1016/j.clay.2014.06.037

    Article  CAS  Google Scholar 

  30. Marco-Brown, J.L.; Barbosa-Lema, C.M.; Torres Sánchez, R.M.; Mercader, R.C.; dos Santos Afonso, M.: Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Appl. Clay Sci. 58, 25–33 (2012). https://doi.org/10.1016/j.clay.2012.01.004

    Article  CAS  Google Scholar 

  31. Wang, J.; Guo, X.: Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258, 127279 (2020). https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Chen, T.; Da, T.; Ma, Y.: Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 322, 114980 (2021). https://doi.org/10.1016/j.molliq.2020.114980

    Article  CAS  Google Scholar 

  33. Tan, K.L.; Hameed, B.H.: Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 74, 25–48 (2017). https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  34. Mahdavinia, G.R.; Etemadi, H.: Surface modification of iron oxide nanoparticles with κ-carrageenan/carboxymethyl chitosan for effective adsorption of bovine serum albumin. Arab. J. Chem. 12, 3692–3703 (2019). https://doi.org/10.1016/j.arabjc.2015.12.002

    Article  CAS  Google Scholar 

  35. Douven, S.; Paez, C.A.; Gommes, C.J.: The range of validity of sorption kinetic models. J. Colloid Interface Sci. 448, 437–450 (2015). https://doi.org/10.1016/j.jcis.2015.02.053

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Jaber, M., Lambert, J.-F., Balme, S.: 8 - Protein adsorption on clay minerals. In: R. Schoonheydt, C.T. Johnston, F. Bergaya (Eds.), Dev Clay Sci, Elsevier, 2018: pp. 255–288. https://doi.org/10.1016/B978-0-08-102432-4.00008-1

  37. Bhattacharyya, K.G.; Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140, 114–131 (2008). https://doi.org/10.1016/j.cis.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  38. Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A. 10, 716–724 (2009). https://doi.org/10.1631/jzus.A0820524

    Article  CAS  Google Scholar 

  39. Wu, R.-L.; Tseng, R.-S.: Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009). https://doi.org/10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  40. Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S.: Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Appl. Clay Sci. 31, 194–206 (2006). https://doi.org/10.1016/j.clay.2005.08.008

    Article  CAS  Google Scholar 

  41. Hwang, Y.S.; Liu, J.; Lenhart, J.J.; Hadad, C.M.: Surface complexes of phthalic acid at the hematite/water interface. J. Colloid Interface Sci. 307, 124–134 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Fu, Q.; Wang, W.; Hu, H.; Chen, S.: Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by minerals: effects of inorganic salts. Eur. J. Soil Sci. 59, 216–221 (2008). https://doi.org/10.1111/j.1365-2389.2007.00977.x

    Article  Google Scholar 

  43. Lepoitevin, M.; Jaber, M.; Guégan, R.; Janot, J.-M.; Dejardin, P.; Henn, F.; Balme, S.: BSA and lysozyme adsorption on homoionic montmorillonite: influence of the interlayer cation. Appl. Clay Sci. 95, 396–402 (2014). https://doi.org/10.1016/j.clay.2014.05.003

    Article  CAS  Google Scholar 

  44. Urano, H.; Fukuzaki, S.: Conformation of adsorbed bovine serum albumin governing its desorption behavior at alumina-water interfaces. J. Biosci. Bioeng. 90, 105–111 (2000). https://doi.org/10.1016/S1389-1723(00)80042-0

    Article  CAS  PubMed  Google Scholar 

  45. Quiquampoix, H., Abadie, J., Baron, M., Leprince, F., Matumoto-Pintro, P., Ratcliffe, R., Staunton, S.: Mechanisms and consequences of protein adsorption on soil mineral surfaces, In: ACS Publications (1995)

  46. Barral, S.; Villa-García, M.A.; Rendueles, M.; Díaz, M.: Interactions between whey proteins and kaolinite surfaces. Acta Mater. 56, 2784–2790 (2008). https://doi.org/10.1016/j.actamat.2008.02.009

    Article  CAS  ADS  Google Scholar 

  47. Shamim, N.; Hong, L.; Hidajat, K.; Uddin, M.S.: Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of Bovine Serum Albumin. J. Colloid Interface Sci. 304, 1–8 (2006). https://doi.org/10.1016/j.jcis.2006.08.047

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Tanyolaç, D.; Özdural, A.R.: BSA adsorption onto magnetic polyvinylbutyral microbeads. J. Appl. Polym. Sci. 80, 707–715 (2001). https://doi.org/10.1002/1097-4628(20010502)80:5%3c707::AID-APP1147%3e3.0.CO;2-K

    Article  Google Scholar 

  49. Wang, Y.; Wang, X.; Luo, G.; Duo, Y.: Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour. Technol.. Technol. 99, 3881–3884 (2008). https://doi.org/10.1016/j.biortech.2007.08.017

    Article  CAS  Google Scholar 

  50. Blade, W.H.; Boulton, R.: Adsorption of protein by Bentonite in a model wine solution. Am. J. Enol. Vitic. 39, 193–199 (1988)

    Article  CAS  Google Scholar 

  51. Johnston, C.T.; Premachandra, G.S.; Szabo, T.; Lok, J.; Schoonheydt, R.A.: Interaction of biological molecules with clay minerals: a combined spectroscopic and sorption study of lysozyme on saponite. Langmuir 28, 611–619 (2012). https://doi.org/10.1021/la203161n

    Article  CAS  PubMed  Google Scholar 

  52. Perez Rodriguez, J.L.; Weiss, A.; Lagaly, G.: A natural clay organic complex from Andalusian black earth. Clays Clay Miner. 25, 243–251 (1977). https://doi.org/10.1346/CCMN.1977.0250311

    Article  Google Scholar 

  53. Chi, Z.; Hong, B.; Ren, X.; Cheng, K.; Lu, Y.; Liu, X.: Investigation on the conformational changes of Bovine serum albumin in a wide pH range from 2 to 12. Spectrosc. Lett. 51, 279–286 (2018). https://doi.org/10.1080/00387010.2018.1471092

    Article  CAS  ADS  Google Scholar 

  54. Salvestrini, S.; Leone, V.; Iovino, P.; Canzano, S.; Capasso, S.: Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms. J. Chem. Thermodyn. 68, 310–316 (2014). https://doi.org/10.1016/j.jct.2013.09.013

    Article  CAS  Google Scholar 

  55. Anirudhan, T.S.; Radhakrishnan, P.G.: Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. J. Chem. Thermodyn. 40, 702–709 (2008). https://doi.org/10.1016/j.jct.2007.10.005

    Article  CAS  Google Scholar 

  56. Arai, T.; Norde, W.: The behavior of some model proteins at solid-liquid interfaces 1. Adsorption from single protein solutions. Colloids Surf. 51, 1–15 (1990)

    Article  CAS  Google Scholar 

  57. Garland, A.; Shen, L.; Zhu, X.: Mobile precursor mediated protein adsorption on solid surfaces. Prog. Surf. Sci.. Surf. Sci. 87, 1–22 (2012). https://doi.org/10.1016/j.progsurf.2012.02.001

    Article  CAS  ADS  Google Scholar 

  58. Norde, W.: Energy and entropy of protein adsorption. J. Dispersion Sci. Technol. 13, 363–377 (1992). https://doi.org/10.1080/01932699208943322

    Article  CAS  Google Scholar 

  59. Schmidt, M.P.; Martínez, C.E.: Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS. Langmuir 32, 7719–7729 (2016). https://doi.org/10.1021/acs.langmuir.6b00786

    Article  CAS  PubMed  Google Scholar 

  60. Barraqué, F.; Montes, M.L.; Fernández, M.A.; Candal, R.; Torres Sánchez, R.M.; Marco-Brown, J.L.: Arsenate removal from aqueous solution by montmorillonite and organo-montmorillonite magnetic materials. Environ. Res. 192, 110247 (2021). https://doi.org/10.1016/j.envres.2020.110247

    Article  CAS  PubMed  Google Scholar 

  61. Abramian, L.; El-Rassy, H.: Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem. Eng. J. 150, 403–410 (2009). https://doi.org/10.1016/j.cej.2009.01.019

    Article  CAS  Google Scholar 

  62. Ho, Y.S.; Ng, J.C.Y.; McKay, G.: Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Methods 29, 189–232 (2000). https://doi.org/10.1081/SPM-100100009

    Article  CAS  Google Scholar 

  63. Kopac, T.; Bozgeyik, K.: Equilibrium, kinetics, and thermodynamics of Bovine serum albumin adsorption on single-walled carbon nanotubes. Chem. Eng. Commun. 203, 1198–1206 (2016). https://doi.org/10.1080/00986445.2016.1160225

    Article  CAS  Google Scholar 

  64. Zhu, Q.; Moggridge, G.D.; D’Agostino, C.: Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: Kinetics and diffusion analysis. Chem. Eng. J.Eng J. 306, 1223–1233 (2016). https://doi.org/10.1016/j.cej.2016.07.087

    Article  CAS  Google Scholar 

  65. Roca Jalil, M.E.; Baschini, M.; Sapag, K.: Removal of ciprofloxacin from aqueous solutions using pillared clays. Materials. 10, 1345 (2017). https://doi.org/10.3390/ma10121345

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Igwe, J.C.; Abia, A.A.: Sorption kinetics and intrapaticulate diffusivity of As(III) bioremediation from aqueous solution, using modified and unmodified coconut fiber. Eclet. Quím. 31, 23–29 (2006). https://doi.org/10.1590/S0100-46702006000300003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors Facundo Barraqué, Rosa M. Torres Sánchez, Mariela A. Fernández, Fernando S. García Einschlag, and F. Manuel Floresa are members of the National Council for Scientific and Technological Research (CONICET). The author Martina Ormaechea is member of the Scientific Investigations Commission (CIC).

Funding

This work was supported by the National Council for Scientific and Technological Research (CONICET) (PIP: 12-2013-01-00236CO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela A. Fernández.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7937 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraqué, F., Fernández, M.A., García Einschlag, F.S. et al. Adsorption of Bovine Serum Albumin on Magnetic Material Montmorillonite: Isotherms, Kinetic, Thermodynamic, and Mechanism Studies. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08649-0

Keywords

Navigation