Skip to main content
Log in

Abstract

Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aksu, Z., Kabasakal, E., 2004. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Separation and Purification Technology, 35(3):223–240. [doi:10.1016/S1383-5866(03)00144-8]

    Article  Google Scholar 

  • Al-Asheh, S., Banat, F., Masad, A., 2004. Kinetics and equilibrium sorption studies of 4-nitrophenol on pyrolyzed and activated oil shale residue. Environmental Geology, 45(8):1109–1117. [doi:10.1007/s00254-004-0969-4]

    Article  Google Scholar 

  • Alkan, M., Demirbaş, Ö., Doğan, M., 2007. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous and Mesoporous Materials, 101(3): 388–396. [doi:10.1016/j.micromeso.2006.12.007]

    Article  Google Scholar 

  • Anirudhan, T.S., Radhakrishnan, P.G., 2008. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. The Journal of Chemical Thermodynamics, 40(4):702–709. [doi:10.1016/j.jct.2007.10.005]

    Article  Google Scholar 

  • Banat, F., Al-Asheh, S., Makhadmeh, L., 2003. Preparation and examination of activated carbons from date pits impregnated with potassium hydroxide for the removal of methylene blue from aqueous solutions. Adsorption Science and Technology, 21(6):597–606. [doi:10.1260/026361703771953613]

    Article  Google Scholar 

  • Boyd, G.E., Adamson, A.W., Myers, L.S., 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites, II, Kinetics. Journal of the American Chemical Society, 69(11):2836–2848. [doi:10.1021/ja01203a066]

    Article  Google Scholar 

  • Chen, Z., Ma, W., Han, M., 2008. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. Journal of Hazardous Materials, 155(1-2):327–333. [doi:10.1016/j.jhazmat.2007.11.064]

    Article  Google Scholar 

  • Cheng, W., Wang, S.G., Lu, L., Gong, W.X., Liu, X.W., Gao, B.Y., Zhang, H.Y., 2008. Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge. Biochemical Engineering Journal, 39(3):538–546. [doi:10.1016/j.bej.2007.10.016]

    Article  Google Scholar 

  • Cheng, X.M., 2004. Study on the Treatment and Resource Reuse of Methyl Salycylate Industry Wastewater. MS Thesis, Nanjing University, China, p.39–56 (in Chinese).

    Google Scholar 

  • Cheung, C.W., Porter, J.F., McKay, G., 2001. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research, 35(3):605–612. [doi:10.1016/S0043-1354(00)00306-7]

    Article  Google Scholar 

  • Chien, S.H., Clayton, W.R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44:265–268.

    Article  Google Scholar 

  • Chiron, N., Guilet, R., Deydier, E., 2003. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Research, 37(13):3079–3086. [doi:10.1016/S0043-1354(03)00156-8]

    Article  Google Scholar 

  • Coleman, N.T., McClung, A.C., Moore, D.P., 1956. Formation constants for Cu(II)-peat complexes. Science, 123(3191): 330–331.

    Article  Google Scholar 

  • Cooney, D.O., 1999. Adsorption Design for Wastewater Treatment. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Crank, J., 1956. Mathematics of Diffusion. Oxford at the Clarendon Press, London, England.

    MATH  Google Scholar 

  • Hamadi, N.K., Swaminathan, S., Chen, X.D., 2004. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, 112(1–2):133–141. [doi:10.1016/j.jhazmat.2004.04.011]

    Article  Google Scholar 

  • Hameed, B.H., 2008. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 154(1–3):204–212. [doi:10.1016/j.jhazmat.2007.10.010]

    Article  Google Scholar 

  • Hameed, B.H., El-Khaiary, M.I., 2008a. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154(1–3):237–244. [doi:10.1016/j.jhazmat.2007.10.017]

    Article  Google Scholar 

  • Hameed, B.H., El-Khaiary, M.I., 2008b. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels. Journal of Hazardous Materials, 154(1-3):639–648. [doi:10.1016/j.jhazmat.2007.10.081]

    Article  Google Scholar 

  • Hameed, B.H., Mahmoud, D.K., Ahmad, A.L., 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1):65–72. [doi:10.1016/j.jhazmat.2008.01.034]

    Article  Google Scholar 

  • Heimberg, J.A., Wahl, K.J., Singer, I.L., Erdemir, A., 2001. Superlow friction behavior of diamond-like carbon coatings: time and speed effects. Applied Physics Letters, 78(17):2449–2451. [doi:10.1063/1.1366649]

    Article  Google Scholar 

  • Ho, Y.S., 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1): 171–177. [doi:10.1023/B:SCIE.0000013305.99473.cf]

    Article  Google Scholar 

  • Ho, Y.S., 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3): 103–111. [doi:10.1016 /j.jhazmat.2005.12.043]

    Article  Google Scholar 

  • Ho, Y.S., McKay, G., 1998a. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4):332–340. [doi:10.1205/095758298529696]

    Article  Google Scholar 

  • Ho, Y.S., McKay, G., 1998b. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2):115–124. [doi:10.1016/S0923-0467(98)00076-1]

    Article  Google Scholar 

  • Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3):735–742. [doi:10.1016/S0043-1354(99)00232-8]

    Article  Google Scholar 

  • Huang, W.W., Wang, S.B., Zhu, Z.H., Li, L., Yao, X.D., Rudolph, V., Haghseresht, F., 2008. Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158(1):35–42. [doi:10.1016/j.jhazmat.2008.01.061]

    Article  Google Scholar 

  • Jain, A.K., Gupta, V.K., Jain, S., Suhas, 2004. Removal of chlorophenols using industrial wastes. Environmental Science & Technology, 38(4):1195–1200. [doi:10.1021/es034412u]

    Article  Google Scholar 

  • Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4):1–39.

    Google Scholar 

  • Lazaridis, N.K., Asouhidou, D.D., 2003. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Research, 37(12):2875–2882. [doi:10.1016/S0043-1354(03)00119-2]

    Article  Google Scholar 

  • Low, M.J.D., 1960. Kinetics of chemisorption of gases on solids. Chemical Reviews, 60(3):267–312.

    Article  Google Scholar 

  • Mahramanlioglu, M., Kizilcikli, I., Bicer, I.O., 2002. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. Journal of Fluorine Chemistry, 115(1):41–47. [doi:10.1016/S0022-1139(02)00003-9]

    Article  Google Scholar 

  • Meng, F.W., 2005. Study on a Mathematical Model in Predicting Breakthrough Curves of Fixed-bed Adsorption onto Resin Adsorbent. MS Thesis, Nanjing University, China, p.28–36 (in Chinese).

    Google Scholar 

  • Min, S.H., Han, J.S., Shin, E.W., Park, J.K., 2004. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Research, 38(5):1289–1295. [doi:10.1016/j.watres.2003.11.016]

    Article  Google Scholar 

  • Namasivayam, C., Kavitha, D., 2005. Adsorptive removal of 2,4-dichlorophenol from aqueous solution by low-cost carbon from an agricultural solid waste: coconut coir pith. Separation Science and Technology, 39(6):1407–1425. [doi:10.1081/SS-120030490]

    Article  Google Scholar 

  • Pan, B.C., Du, W., Zhang, W.M., Zhang, X., Zhang, Q.R., Pan, B.J., Lu, L., Zhang, Q.X., Chen, J.L., 2007. Improved adsorption of 4-nitrophenol onto a novel hyper-crosslinked polymer. Environmental Science & Technology, 41(14):5057–5062. [doi:10.1021/es070134d]

    Article  Google Scholar 

  • Petroni, S.L.G., Pires, M.A.F., Munita, C.S., 2004. Use of radiotracer in adsorption studies of copper on peat. Journal of Radioanalytical and Nuclear Chemistry, 259(2):239–243. [doi:10.1023/B:JRNC.0000017295.68663.6b]

    Article  Google Scholar 

  • Rosa, S., Laranjeira, M.C.M., Riela, H.G., Fάvere, V.T., 2008. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. Journal of Hazardous Materials, 155(1-2):253–260. [doi:10.1016/j. jhazmat.2007.11.059]

    Article  Google Scholar 

  • Rudzinski, W., Panczyk, T., 2000. Kinetics of isothermal adsorption on energetically heterogeneous solid surfaces: a new theoretical description based on the statistical rate theory of interfacial transport. Journal of Physical Chemistry, 104(39):9149–9162. [doi:10.1021/jp000045m]

    Article  Google Scholar 

  • Sağ, Y., Aktay, Y., 2002. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochemical Engineering Journal, 12(2):143–153. [doi:10.1016/S1369- 703X(02)00068-2]

    Article  Google Scholar 

  • Shin, E.W., Han, J.S., Jang, M., Min, S.H., Park, J.K., Rowell, R.M., 2004. Phosphate adsorption on aluminumimpregnated mesoporous silicates: surface structure and behavior of adsorbents. Environmental Science & Technology, 38(3):912–917. [doi:10.1021/es030488e]

    Article  Google Scholar 

  • Slaney, A.J, Bhamidimarri, R., 1998. Adsorption of pentachlorophenol (PCP) by actived carbon in fixed beds: application of homogeneous surface diffusion model. Water Science and Technology, 38(7):227–235. [doi:10.1016/S0273-1223(98)00630-1]

    Article  Google Scholar 

  • Sun, Q.Y., Yang, L.Z., 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7):1535–1544. [doi:10.1016/S0043-1354(02)00520-1]

    Article  Google Scholar 

  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H., 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154(1–3):337–346. [doi:10.1016/j.jhazmat.2007.10.031]

    Article  Google Scholar 

  • Tien, C., 2007. Remarks on adsorption manuscripts received and declined: An editorial. Separation and Purification Technology, 54(3):277–278. [doi:10.1016/j.seppur.2007.02.006]

    Article  MathSciNet  Google Scholar 

  • Tien, C., 2008. Remarks on adsorption manuscripts revised and declined: An editorial. Journal of Hazardous Materials, 150(1):2–3. [doi:10.1016/j.jhazmat.2007.04.015]

    Article  Google Scholar 

  • Varshney, K.G., Khan, A.A., Gupta, U., Maheshwari, S.M., 1996. Kinetics of adsorption of phosphamidon on antimony(V) phosphate cation exchanger evaluation of the order of reaction and some physical parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 113(1–2):19–23. [doi:10.1016/0927-7757(96)03546-7]

    Article  Google Scholar 

  • Wan Ngah, W.S., Hanafiah, M.A.K.M., 2008. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39(3):521–530. [doi:10.1016/j.bej.2007.11.006]

    Article  Google Scholar 

  • Wang, H.L., Chen, J.L., Zhai, Z.C., 2004. Study on thermodynamics and kinetics of adsorption of p-toluidine from aqueous solution by hypercrosslinked polymeric adsorbents. Environmental Chemistry, 23(2):188–192 (in Chinese).

    Google Scholar 

  • Wilczak, A., Keinath, T.M., 1993. Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon. Water Environment Research, 65:238–244.

    Article  Google Scholar 

  • Xu, G.M., Shi, Z., Deng, J., 2006. Adsorption of antimony on IOCS: kinetics and mechanisms. Acta Scientiae Circumstantiae, 26(4):607–612 (in Chinese).

    Google Scholar 

  • Yan, G.T., Viraraghavan, T., 2003. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37(18): 4486–4496. [doi:10.1016/S0043-1354(03)00409-3]

    Article  Google Scholar 

  • Zeldowitsch, J., 1934. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochemical URSS, 1:364–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-cai Pan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 20504012), and the New Century Excellent Talents in University of China (No. NCET-07-0421)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, H., Lv, L., Pan, Bc. et al. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 10, 716–724 (2009). https://doi.org/10.1631/jzus.A0820524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820524

Key words

CLC number

Navigation